20.已知向量$\overrightarrow{a}$=(sin2x,cos2x),$\overrightarrow$=(cosφ,sinφ),設(shè)函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$(-π<φ<0)且y=f(x)的圖象的一條對稱軸是直線x=$\frac{π}{8}$.
(1)求φ的值和f(x)的最小正周期;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

分析 (1)根據(jù)平面向量的坐標(biāo)運(yùn)算和三角恒等變換求出函數(shù)f(x),再根據(jù)f(x)圖象的對稱軸求出φ的值,即可得出結(jié)論;
(2)根據(jù)正弦函數(shù)的單調(diào)性,即可求出函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

解答 解:(1)∵向量$\overrightarrow{a}$=(sin2x,cos2x),$\overrightarrow$=(cosφ,sinφ),
∴函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$=sin2xcosφ+cos2xsinφ=sin(2x+φ);
又y=f(x)圖象的一條對稱軸是直線x=$\frac{π}{8}$,
∴2×$\frac{π}{8}$+φ=kπ+$\frac{π}{2}$,k∈Z,
解得φ=kπ+$\frac{π}{4}$;
又-π<φ<0,
∴φ=-$\frac{3π}{4}$,
∴f(x)=sin(2x-$\frac{3π}{4}$),
∴f(x)的最小正周期為T=$\frac{2π}{2}$=π;
(2)函數(shù)y=f(x)=sin(2x-$\frac{3π}{4}$),
令-$\frac{π}{2}$+2kπ≤2x-$\frac{3π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得$\frac{π}{8}$+kπ≤x≤$\frac{5π}{8}$+kπ,k∈Z,
∴f(x)的單調(diào)遞增區(qū)間為[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z.

點(diǎn)評 本題考查了平面向量的數(shù)量積與三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖,圖中A點(diǎn)表示十月的平均最高氣溫約為15℃,B點(diǎn)表示四月的平均最低氣溫約為5℃,下面敘述不正確的是( 。
A.各月的平均最低氣溫都在0℃以上
B.七月的平均溫差比一月的平均溫差大
C.三月和十一月的平均最高氣溫基本相同
D.平均最高氣溫高于20℃的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N*),則a2013等于( 。
A.1B.-$\sqrt{3}$+2C.-$\sqrt{3}$-2D.$\sqrt{3}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB.
(Ⅰ)已知AB=BC,AE=EC,求證:AC⊥FB;
(Ⅱ)已知G,H分別是EC和FB的中點(diǎn),求證:GH∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)實(shí)數(shù)x,y滿足x2-3xy+y2=1,則x-2y的取值范圍是(-∞,-$\frac{2\sqrt{5}}{5}$]∪[$\frac{2\sqrt{5}}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知隨機(jī)變量X~N(1,σ2)(σ>0),則方程x2-2x+X=0沒有實(shí)根的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,sinA=$\frac{33}{65}$,cosC=$\frac{4}{5}$.
(1)求cosB的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AC}$=56,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{{x}^{2}}{a^2}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2$\sqrt{5}$,且雙曲線的一條漸近線與直線2x+y=0垂直,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1D.$\frac{3{x}^{2}}{5}$-$\frac{{3y}^{2}}{20}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=2ln(x+2)-(x+1)2,g(x)=k(x+1)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k=2時(shí),求證:對于?x>-1,f(x)<g(x)恒成立.

查看答案和解析>>

同步練習(xí)冊答案