10.某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖,圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃,下面敘述不正確的是( 。
A.各月的平均最低氣溫都在0℃以上
B.七月的平均溫差比一月的平均溫差大
C.三月和十一月的平均最高氣溫基本相同
D.平均最高氣溫高于20℃的月份有5個

分析 根據(jù)平均最高氣溫和平均最低氣溫的雷達圖進行推理判斷即可.

解答 解:A.由雷達圖知各月的平均最低氣溫都在0℃以上,正確
B.七月的平均溫差大約在10°左右,一月的平均溫差在5°左右,故七月的平均溫差比一月的平均溫差大,正確
C.三月和十一月的平均最高氣溫基本相同,都為10°,正確
D.平均最高氣溫高于20℃的月份有7,8兩個月,故D錯誤,
故選:D

點評 本題主要考查推理和證明的應(yīng)用,根據(jù)平均最高氣溫和平均最低氣溫的雷達圖,利用圖象法進行判斷是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≥0}\\{-{2}^{x}+1,x<0}\end{array}\right.$的圖象可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=x+$\frac{2}{x}$(x>0)的圖象(如圖所示),你能說出這個函數(shù)在哪個區(qū)間為單調(diào)函數(shù)嗎?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)設(shè)a=b=4,若函數(shù)f(x)有三個不同零點,求c的取值范圍;
(3)求證:a2-3b>0是f(x)有三個不同零點的必要而不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)確定a的所有可能取值,使得f(x)>$\frac{1}{x}$-e1-x在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(1)證明:MN∥平面PAB;
(2)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的通項an=$\frac{n-\sqrt{98}}{n-\sqrt{99}}$(n∈N),則數(shù)列{an}的最大項是第10項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知△ABC的三邊長分別為3,5,7,則該三角形的外接圓半徑等于$\frac{7\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(sin2x,cos2x),$\overrightarrow$=(cosφ,sinφ),設(shè)函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$(-π<φ<0)且y=f(x)的圖象的一條對稱軸是直線x=$\frac{π}{8}$.
(1)求φ的值和f(x)的最小正周期;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案