7.已知X={-1,0,1},Y={-2,-1,0,1,2},映射f:X→Y滿(mǎn)足:對(duì)任意的x∈X,它在Y中的像f(x)使得x+f(x)為偶數(shù),這樣的映射有12個(gè).

分析 由題意知x+f(x)為偶數(shù),奇數(shù)加奇數(shù)為偶數(shù),偶數(shù)加偶數(shù)為偶數(shù);說(shuō)明X中的偶數(shù)只能映射為偶數(shù),X中的奇數(shù)只能映射為奇數(shù);再確定X分三步,依次定三個(gè)元素的對(duì)應(yīng)元素,因此是乘法原理求出.

解答 解:由題意知所謂映射就是集合的對(duì)應(yīng)方法,則就是要看X中的元素對(duì)應(yīng)Y的元素的可行的方法數(shù).
因x+f(x)為偶數(shù)且M={-1,0,1},且有奇數(shù)加奇數(shù)為偶數(shù),偶數(shù)加偶數(shù)為偶數(shù),
則有下面的情況:
①x=-1,f(x)=-1,1;故有2兩種對(duì)應(yīng)方法; ②x=0,f(x)=-2,0,2;故有3兩種對(duì)應(yīng)方法;
③x=1,f(x)=-1,1;故有2種對(duì)應(yīng)方法;
∴滿(mǎn)足條件的映射有2×3×2=12個(gè).
故答案為:12.

點(diǎn)評(píng) 本題考查了映射的定義即是集合的對(duì)應(yīng)方法,利用奇數(shù)加奇數(shù)為偶數(shù),偶數(shù)加偶數(shù)為偶數(shù),找出集合M中元素的所有的對(duì)應(yīng)方法,利用分步乘法計(jì)數(shù)原理求總數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為16+π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,△ABC是邊長(zhǎng)為2的正三角形,EC⊥平面ABC,DB⊥平面ABC,且M為AE的中點(diǎn),CE=CA=2BD.
(1)求證:DM∥平面ABC;
(2)求證:平面DEA⊥平面ECA;
(3)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.我市某大型企業(yè)2009年至2015年銷(xiāo)售額y(單位:億元)的數(shù)據(jù)如表所示:
年份2009201020112012201320142015
代號(hào)t1234567
銷(xiāo)售額y27313541495662
(1)畫(huà)出年份代號(hào)與銷(xiāo)售額的散點(diǎn)圖;

(2)求y關(guān)于t的線(xiàn)性回歸方程,相關(guān)數(shù)據(jù)保留兩位小數(shù);
(3)利用所求回歸方程,說(shuō)出2009年至2015年該大型企業(yè)銷(xiāo)售額的變化情況,并預(yù)測(cè)該企業(yè)2016年的銷(xiāo)售額,相關(guān)數(shù)據(jù)保留兩位小數(shù).
附:回歸直線(xiàn)的斜率的最小二乘法估計(jì)公式:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t)^{2}}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)g(x)=ax與h(x)=-lnx的圖象上存在關(guān)于x軸對(duì)稱(chēng)的點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{2}{e}$)B.($\frac{1}{e}$,+∞)C.(e,+∞)D.(-∞,$\frac{1}{e}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在平面直角坐標(biāo)系xOy中,已知二次函數(shù)f(x)=x2+bx+c與x軸交于A(yíng)(-1,0),B(2,0)兩點(diǎn),則關(guān)于x的不等式x2+bx+c<4的解集是(-2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖:點(diǎn)P在直徑AB=1的半圓上移動(dòng)(點(diǎn)P不與A,B重合),過(guò)P作圓的切線(xiàn)PT且PT=1,∠PAB=α,
(1)當(dāng)α為何值時(shí),四邊形ABTP面積最大?
(2)求|PA|+|PB|+|PC|的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\frac{sinx}{x}$,則f′(π)=( 。
A.0B.$\frac{1}{π}$C.-$\frac{1}{π}$D.-$\frac{1}{{π}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖所示,在半徑為7,圓心角為$\frac{π}{4}$的扇形鐵皮ADE上截去一個(gè)半徑為3的小扇形ABC,則剩下扇環(huán)的面積為5π.

查看答案和解析>>

同步練習(xí)冊(cè)答案