12.如圖,點(diǎn)P是△ABC在平面外的一點(diǎn),PA=PB=PC=2,AB=BC=AC=1,
(1)求PC與平面ABC所成的角
(2)若E為PC的中點(diǎn),求BE與平面ABC所成的角.

分析 (1)取AB中點(diǎn)D,連接PD、CD,可證明出平面PCD⊥平面ABC,從而得到∠PCD是直線PC和平面ABC所成的角.在△PCD中,算出PD、CD的長,用余弦定理算出cos∠PCD的值,從而得到∠PCD的度數(shù),即為PC和平面ABC所成的角.
(2)設(shè)P在平面ABC中的射影為O,E在平面ABC中的射影為O′,O,O′在CD上,則∠EBO′為BE與平面ABC所成的角.

解答 解:(1)取AB中點(diǎn)D,連接PD、CD
∵PA=PB,D為AB中點(diǎn),
∴PD⊥AB,
同理可得CD⊥AB
∵PD、CD是平面PCD內(nèi)的相交直線
∴AB⊥平面PCD
∵AB?平面ABC,
∴平面PCD⊥平面ABC,
由此可得直線PC在平面ABC內(nèi)的射影是直線CD,
∴∠PCD是直線PC和平面ABC所成的角
∵△PAB中,PA=PB=2,AB=1
∴PD=$\frac{\sqrt{15}}{2}$,
又∵正△ABC中,CD=$\frac{\sqrt{3}}{2}$AB=$\frac{\sqrt{3}}{2}$
∴△PCD中,cos∠PCD=$\frac{4+\frac{3}{4}-\frac{15}{4}}{2×2×\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{6}$
∴PC和平面ABC所成的角等于arccos$\frac{\sqrt{3}}{6}$;
(2)設(shè)P在平面ABC中的射影為O,E在平面ABC中的射影為O′,O,O′在CD上,
則∠EBO′為BE與平面ABC所成的角.
由(1)sin∠PCD=$\frac{\sqrt{33}}{6}$,
∴PO=$\frac{\sqrt{33}}{3}$,EO′=$\frac{\sqrt{33}}{6}$,
由三角形中線的求法,4+4BE2=2(4+1),
∴BE=$\frac{\sqrt{6}}{2}$,
∴sin∠EBO′=$\frac{\sqrt{22}}{6}$,
∴BE與平面ABC所成的角等于arcsin$\frac{\sqrt{22}}{6}$.

點(diǎn)評 本題在正三棱錐中求側(cè)棱與底面所成角的大小,著重考查了線面垂直、面面垂直的證明和直線與平面所成角大小的求法等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2{x}^{3}-a{x}^{2}-1,x<0}\\{|x-3|+a,x≥0}\end{array}\right.$恰有兩個(gè)零點(diǎn),則a的取值范圍是( 。
A.(-3,0)B.(-∞,0)C.(-∞,-3)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.己知a>2,p=a+$\frac{1}{a-2}$,q=2${\;}^{-{a}^{2}+4a-2}$,則( 。
A.p>qB.p<qC.p≥qD.p≤q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)集合A={x|-2≤x≤5},B={x|x2-3mx+2m2-m-1<0}.
(1)當(dāng)x∈Z時(shí),求A的非空真子集的個(gè)數(shù).
(2)若B=∅,求m的取值范圍.
(3)若A?B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ex(x2-3).
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)fn(x)=-xn+3ax(a∈R,n∈N+),若對任意的x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,則a的取值范圍是( 。
A.[$\frac{1}{6}$,$\frac{1}{\root{3}{16}}$]B.[$\frac{1}{6}$,$\frac{1}{4}$]C.[$\frac{1}{9}$,$\frac{1}{\root{3}{16}}$]D.[$\frac{1}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a,b均為大于1的自然數(shù),若圓心在原點(diǎn)的單位圓O上存在點(diǎn)(x0,y0),使得b+x0=a(b+y0)成立.則a+b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)A(-1,2)在矩陣$M=[{\begin{array}{l}{-1}&0\\ 0&1\end{array}}]$對應(yīng)的變換作用下得到點(diǎn)A′,將點(diǎn)B(3,4)繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)B′,求點(diǎn)B′的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.證明:7|(22225555+55552222

查看答案和解析>>

同步練習(xí)冊答案