(本小題滿分12分)如圖,橢圓上的點M與橢圓右焦點的連線與x軸垂直,且OM(O是坐標(biāo)原點)與橢圓長軸和短軸端點的連線AB平行.

(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是 ,求此時橢圓的方程.

(1);(2).

解析試題分析:(1)點M與橢圓右焦點的連線與x軸垂直,可得,又,橢圓中,可得;(2)設(shè)直線PQ的方程為 ,代入橢圓方程整理得,可得從而解得,可得橢圓的標(biāo)準(zhǔn)方程.
解:(1)易得
(2)令,設(shè)直線PQ的方程為 .代入橢圓方程消去x得:,
整理得:

因此a2=50,b2=25,所以橢圓方程為 
考點:橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,設(shè)而不求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過點,離心率為,過點的直線與橢圓交于不同的兩點
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點,G,H分別是線段ON,CN的中點.
(1)證明:直線EG與FH的交點L在橢圓W:上;
(2)設(shè)直線l:與橢圓W:有兩個不同的交點P,Q,直線l與矩形ABCD有兩個不同的交點S,T,求的最大值及取得最大值時m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知⊙O′過定點A(0,p)(p>0),圓心O′在拋物線C:x2=2py(p>0)上運動,MN為圓O′在x軸上所截得的弦.

(1)當(dāng)O′點運動時,|MN|是否有變化?并證明你的結(jié)論;
(2)當(dāng)|OA|是|OM|與|ON|的等差中項時,試判斷拋物線C的準(zhǔn)線與圓O′的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)M、N為拋物線C:y=x2上的兩個動點,過M、N分別作拋物線C的切線l1、l2,與x軸分別交于A、B兩點,且l1與l2相交于點P,若|AB|=1.

(1)求點P的軌跡方程;
(2)求證:△MNP的面積為一個定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,曲線C1是以原點O為中心,F(xiàn)1,F(xiàn)2為焦點的橢圓的一部分.曲線C2是以O(shè)為頂點,F(xiàn)2為焦點的拋物線的一部分,A是曲線C1和C2的交點且∠AF2F1為鈍角,若|AF1|=,|AF2|=

(1)求曲線C1和C2的方程;
(2)設(shè)點C是C2上一點,若|CF1|=|CF2|,求△CF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
如圖,已知拋物線,過點任作一直線與相交于兩點,過點軸的平行線與直線相交于點為坐標(biāo)原點).

(1)證明:動點在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點,與(1)中的定直線相交于點,證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的方程為,定直線的方程為.動圓與圓外切,且與直線相切.
(1)求動圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點, 過點作直線的垂線恰好經(jīng)過點,并交軌跡于異于點的點,求直線的方程及的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,雙曲線的中心在坐標(biāo)原點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點,雙曲線的左支上有一點P,∠F1PF2,且△PF1F2的面積為2,雙曲線的離心率為2,求該雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案