如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點(diǎn),G,H分別是線段ON,CN的中點(diǎn).
(1)證明:直線EG與FH的交點(diǎn)L在橢圓W:上;
(2)設(shè)直線l:與橢圓W:有兩個(gè)不同的交點(diǎn)P,Q,直線l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T,求的最大值及取得最大值時(shí)m的值.

(1)證明見解析;(2)當(dāng)時(shí),取得最大值.

解析試題分析:解題思路:(1)由點(diǎn)寫出直線方程,聯(lián)立直線方程得到交點(diǎn)坐標(biāo),,驗(yàn)證點(diǎn)滿足橢圓方程;(2)聯(lián)立直線與橢圓的方程,常用“設(shè)而不求”的方法,求弦長(zhǎng),進(jìn)而求所求比值,常用換元法求最值.規(guī)律總結(jié):直線與圓錐曲線的位置關(guān)系問題,一般綜合性強(qiáng).一般思路是聯(lián)立直線與圓錐曲線的方程,整理得關(guān)于的一元二次方程,常用“設(shè)而不求”的方法進(jìn)行求解.
試題解析:(1)點(diǎn),,
則直線EG:,直線FH:
則直線EG與FH的交點(diǎn),
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/c/1qcsa4.png" style="vertical-align:middle;" />,故直線EG與FH的交點(diǎn)L在橢圓W:上.
(2)聯(lián)立方程組消去y,得,
設(shè),則,,

,
若直線l過A點(diǎn)時(shí),,
①當(dāng)時(shí),,,當(dāng)時(shí),最大值
②當(dāng)時(shí),設(shè),,
,令,則,
當(dāng),即時(shí),取最大值
綜上所述,當(dāng)時(shí),取得最大值
考點(diǎn):直線與橢圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,過頂點(diǎn)的直線與橢圓相交于兩點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)在橢圓上且滿足,求直線的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線y=kx+b與曲線交于A、B兩點(diǎn),記△AOB的面積為S(O是坐標(biāo)原點(diǎn)).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,且,點(diǎn)在橢圓上,且的周長(zhǎng)為6.
(1)求橢圓的方程;(2)若點(diǎn)的坐標(biāo)為,不過原點(diǎn)的直線與橢圓相交于不同兩點(diǎn),設(shè)線段的中點(diǎn)為,且三點(diǎn)共線.設(shè)點(diǎn)到直線的距離為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓經(jīng)過橢圓的右焦點(diǎn)和上頂點(diǎn)
(1)求橢圓的方程;
(2)過原點(diǎn)的射線與橢圓在第一象限的交點(diǎn)為,與圓的交點(diǎn)為,的中點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的對(duì)稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為,右焦點(diǎn)F與點(diǎn) 的距離為2。
(1)求橢圓的方程;
(2)是否存在斜率 的直線使直線與橢圓相交于不同的兩點(diǎn)M,N滿足,若存在,求直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.

(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是 ,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知拋物線的焦點(diǎn)為,上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且有且只有一個(gè)公共點(diǎn),
(。┳C明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如果正△ABC中,D∈AB,E∈AC,向量,那么以B,C為焦點(diǎn)且過點(diǎn)D,E的雙曲線的離心率是     

查看答案和解析>>

同步練習(xí)冊(cè)答案