已知圓的方程為,定直線的方程為.動(dòng)圓與圓外切,且與直線相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點(diǎn), 過點(diǎn)作直線的垂線恰好經(jīng)過點(diǎn),并交軌跡于異于點(diǎn)的點(diǎn),求直線的方程及的長.
(1);(2)直線PQ的方程:x+y-6=0,|PQ|=.
解析試題分析:(1)設(shè)圓心C的坐標(biāo)為(x,y),根據(jù)題意可以得到關(guān)于x,y的方程組,消去參數(shù)以后即可得到x,y所滿足的關(guān)系式,即圓心C的軌跡M的方程;(2)設(shè)點(diǎn)P的坐標(biāo)為,根據(jù)題意可以把l’用含x0的代數(shù)式表示出來,由經(jīng)過點(diǎn)A(0,6)可以求得點(diǎn)P的坐標(biāo)與l’的方程,再聯(lián)立(1)中M的軌跡方程,即可求出Q的坐標(biāo),從而得到|PQ|d的長.
(1)設(shè)動(dòng)圓圓心C的坐標(biāo)為(x,y),動(dòng)圓半徑為R,則 ,且
|y+1|="R" 2分,可得.
由于圓C1在直線l的上方,所以動(dòng)圓C的圓心C應(yīng)該在直線l的上方,所以有y+1>0,從而得,整理得,即為動(dòng)圓圓心C的軌跡M的方程. 5分
(2)如圖示,設(shè)點(diǎn)P的坐標(biāo)為,則切線的斜率為,可得直線PQ的斜率為,所以直線PQ的方程為.由于該直線經(jīng)過點(diǎn)A(0,6),所以有,得.因?yàn)辄c(diǎn)P在第一象限,所以,點(diǎn)P坐標(biāo)為(4,2),直線PQ的方程為x+y-6=0.——9分
把直線PQ的方程與軌跡M的方程聯(lián)立得,解得x=-12或4
12分
考點(diǎn):1、軌跡方程的求法;2、直線與拋物線綜合;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是 ,求此時(shí)橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知拋物線的焦點(diǎn)為,為上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個(gè)公共點(diǎn),
(。┳C明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P是圓M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一點(diǎn),點(diǎn)N的坐標(biāo)為(2,0),線段NP的垂直平分線交直線MP于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當(dāng)m=時(shí),在x軸上是否存在一定點(diǎn)E,使得對(duì)曲線C的任意一條過E的弦AB,為定值?若存在,求出定點(diǎn)和定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上.設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓.
(1)求的值;
(2)證明:圓與軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點(diǎn)為,離心率,是橢圓上的動(dòng)點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)若直線與的斜率乘積,動(dòng)點(diǎn)滿足,(其中實(shí)數(shù)為常數(shù)).問是否存在兩個(gè)定點(diǎn),使得?若存在,求的坐標(biāo)及的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個(gè)焦點(diǎn)為,且離心率為.
(1)求橢圓方程;
(2)過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2014·武漢模擬)已知點(diǎn)P是圓M:x2+(y+m)2=8(m>0,m≠)上一動(dòng)點(diǎn),點(diǎn)N(0,m)是圓M所在平面內(nèi)一定點(diǎn),線段NP的垂直平分線l與直線MP相交于點(diǎn)Q.
(1)當(dāng)P在圓M上運(yùn)動(dòng)時(shí),記動(dòng)點(diǎn)Q的軌跡為曲線Г,判斷曲線Г為何種曲線,并求出它的標(biāo)準(zhǔn)方程.
(2)過原點(diǎn)斜率為k的直線交曲線Г于A,B兩點(diǎn),其中A在第一象限,且它在x軸上的射影為點(diǎn)C,直線BC交曲線Г于另一點(diǎn)D,記直線AD的斜率為k′,是否存在m,使得對(duì)任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com