函數(shù)f(x)=sinx(x∈[0,π]),在區(qū)間[0,π]上任取一點x0,則f(x0)≥
1
2
的概率為(  )
A、
2
3
B、
1
2
C、
π
3
D、
π
6
考點:幾何概型
專題:概率與統(tǒng)計
分析:求出不等式f(x0)≥
1
2
的解,利用幾何概型的概率公式即可得到結(jié)論.
解答: 解:若f(x)≥
1
2
,即sinx≥
1
2
,解得
π
6
≤x≤
6

則在區(qū)間[0,π]上任取一點x0,則f(x0)≥
1
2
的概率P=
6
-
π
6
π-0
=
2
3
,
故選:A
點評:本題主要考查幾何概型的概率計算,根據(jù)不等式的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)ω=-
1
2
+
3
2
i(i為虛數(shù)單位),則ω4等于( 。
A、1
B、-
1
2
+
3
2
i
C、
1
2
-
3
2
i
D、
1
2
+
3
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y)是直線kx+y+4=0(k>0)上一動點,PA是圓C:x2+y2-2y=0的一條切線,A是切點,若PA長度最小值為2,則k的值為( 。
A、3
B、
21
2
C、2
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,
.
Z
(1+i)=3-i,則復(fù)數(shù)Z=(  )
A、1+2iB、1-2i
C、2+iD、2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個正方體的玩具,六個面標(biāo)注了數(shù)字1,2,3,4,5,6,甲、乙兩位學(xué)生進(jìn)行如下游戲:甲先拋擲一次,記下正方體朝上的數(shù)字為a,再由乙拋擲一次,朝上數(shù)字為b,若|a-b|≤1就稱甲、乙兩人“默契配合”,則甲、乙兩人“默契配合”的概率為( 。
A、
1
9
B、
2
9
C、
7
18
D、
4
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3-2sin22x的最小正周期為(  )
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),線段PF1=4,線段PF2的垂直平分線與PF1交于Q點,
(1)求Q點的軌跡方程;
(2)已知點 A(-2,0),過點F2且斜率為k(k≠0)的直線l與Q點的軌跡相交于E,F(xiàn)兩點,直線AE,AF分別交直線x=3于點M,N,線段MN的中點為P,記直線PF2的斜率為k′.求證:k•k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
y2
a2
+
x2
b2
=1(a>b>0)兩頂點A(-b,0),B(b,0),短軸長為4,焦距為2,過點P(4,0)的直線l與橢圓交于C,D兩點.
(1)求橢圓的方程;
(2)求線段C,D中點Q的軌跡方程;
(3)若直線AC的斜率為1,在橢圓上求一點M,使三角形△MAC面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓E1
x2
a12
+
y2
b12
=1和橢圓E2
x2
a22
+
y2
b22
=1滿足
a1
a2
=
b1
b2
=m(m>0),則稱這兩個橢圓相似,m稱為其相似比.
(1)求經(jīng)過點(2,
6
),且與橢圓
x2
4
+
y2
2
=1相似的橢圓方程.
(2)設(shè)過原點的一條射線l分別與(1)中的兩個橢圓交于A、B兩點(其中點A在線段OB上),求|OA|+
1
|OB|
的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案