【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),其中.以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知曲線與交于, 兩點,記點, 相應(yīng)的參數(shù)分別為, ,當(dāng)時,求的值.
【答案】(1), ;(2)4
【解析】試題分析:(1)曲線的參數(shù)方程為利用平方法消去參數(shù)可得出曲線的普通方程,由曲線的極坐標(biāo)方程利用 即可得曲線的直角坐標(biāo)方程;(2)由題知直線恒過定點,又,由參數(shù)方程的幾何意義知是線段的中點,由垂徑定理可得的值.
試題解析:(1)曲線的參數(shù)方程為(為參數(shù)),
所以: 的普通方程: ,其中;
曲線的極坐標(biāo)方程為,
所以: 的直角坐標(biāo)方程: .
(2)由題知直線恒過定點,又,
由參數(shù)方程的幾何意義知是線段的中點,
曲線是以為圓心,半徑的圓,
且.
由垂徑定理知: .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)①,②,③,
判斷如下兩個命題的真假:
命題甲: 在區(qū)間上是增函數(shù);
命題乙: 在區(qū)間上恰有兩個零點,且.
能使命題甲、乙均為真的函數(shù)的序號是
A. ① B. ② C. ①③ D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:的焦點為F,是拋物線E上一點,且.
1求拋物線E的標(biāo)準(zhǔn)方程;
2設(shè)點B是拋物線E上異于點A的任意一點,直線AB與直線交于點P,過點P作x軸的垂線交拋物線E于點M,設(shè)直線BM的方程為,k,b均為實數(shù),請用k的代數(shù)式表示b,并說明直線BM過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,公園里有一湖泊,其邊界由兩條線段和以為直徑的半圓弧組成,其中為2百米,為.若在半圓弧,線段,線段上各建一個觀賞亭,再修兩條棧道,使. 記.
(1)試用表示的長;
(2)試確定點的位置,使兩條棧道長度之和最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率與雙曲線的離心率互為倒數(shù),且過點.
(1)求橢圓C的方程;
(2)過作兩條直線與圓相切且分別交橢圓于M、N兩點.
① 求證:直線MN的斜率為定值;
② 求△MON面積的最大值(其中O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)圖象向左平移個單位,再把各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,則下列說法中正確的是( )
A.的最大值為B.是奇函數(shù)
C.的圖象關(guān)于點對稱D.在上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問100名性別不同的大學(xué)生是否愛好踢毽子,得到如下的列聯(lián)表:
隨機(jī)變量經(jīng)計算,統(tǒng)計量K2的觀測值k0≈4.762,參照附表,得到的正確結(jié)論是( )
A. 在犯錯誤的概率不超過5%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”
B. 在犯錯誤的概率不超過5%的前提下,認(rèn)為“愛好該項運動與性別無關(guān)”
C. 有97.5%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”
D. 有97.5%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項的和記為Sn.如果a4=-12,a8=-4.
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最小值及其相應(yīng)的n的值;
(3)從數(shù)列{an}中依次取出a1,a2,a4,a8,…,,…,構(gòu)成一個新的數(shù)列{bn},求{bn}的前n項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com