分析 本題考查的是直線垂直時斜率之間的關(guān)系,及直線與圓的相關(guān)性質(zhì),要處理本題我們先要畫出滿足條件的圖形,數(shù)形結(jié)合容易得到符合題目中的條件的數(shù)理關(guān)系,由優(yōu)弧所對的圓心角最大,劣弧所對的圓心角最小弦長最短,及過圓內(nèi)一點最短的弦與過該點的直徑垂直,易得到解題思路.
解答 解:如圖示,由圖形可知:
點A(1,$\sqrt{2}$)在圓(x-2)2+y2=4的內(nèi)部,
圓心為O(2,0),要使得優(yōu)弧所對的圓心角最大,則劣弧所對的圓心角最小,只能是直線l⊥OA,
所以k=-$\frac{1}{{k}_{OA}}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.
點評 垂徑定理及其推論是解決直線與圓關(guān)系時常用的定理,要求大家熟練掌握,垂徑定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對的兩條。嚓P(guān)推論,過圓內(nèi)一點垂直于該點直徑的弦最短,且弦所對的劣弧最短,優(yōu)弧最長,弦所對的圓心角、圓周角最。
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≤-2或m≥2 | B. | -2≤m≤2 | C. | m<-2或m>2 | D. | -2<m<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 2$\sqrt{6}$ | C. | 2$\sqrt{7}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com