【題目】如圖,在四棱錐中,底面是邊長為的正方形,

(1)求證:;

(2)若分別為的中點,平面,求直線與平面所成角的大。

【答案】(1)詳見解析;(2).

【解析】試題分析:本題主要考查線面垂直的判定與性質(zhì)、二面角的求解等基礎知識,考查學生的分析問題解決問題的能力、空間想象能力、邏輯推理能力、計算能力.第一問,利用線面垂直的判定定理,先證出平面,利用線面垂直的性質(zhì)定理得,在中再證明;第二問,先證明兩兩垂直,從而建立空間直角坐標系,求出平面的法向量,再求直線與平面所成角的正弦值,最后確定角.

試題解析:(1)連接,,,交于點,

因為底面是正方形,

所以的中點.

所以平面,

由于平面,.

,.

解法1

的中點為,連接,∥=,

所以為平行四邊形,,

因為平面,

所以平面,

所以,的中點為,

所以.

平面,又可得,

,又

所以平面

所以,,

所以平面

(注意:沒有證明出平面,直接運用這一結論的,后續(xù)過程不給分)

由題意,兩兩垂直, ,為坐標原點,向量的方向為軸的正方向建立如圖所示的空間直角坐標系,

為平面的一個法向量.

設直線與平面所成角為,

所以直線與平面所成角為.

解法2:設的中點為,連接,∥=,

所以為平行四邊形,,

因為平面

所以平面,

所以,

的中點為,所以.

同理,又,又

所以平面

所以,,

所以平面

連接、,設交點為,連接,設的中點為,連接,

則在三角形中,,所以平面

又在三角形中,

所以即為直線與平面所成的角.

,,

所以在直角三角形,,

所以,直線與平面所成的角為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,原點為,橢圓的動弦過焦點且不垂直于坐標軸,弦的中點為,過且垂直于線段的直線交射線于點

(1)證明:點在定直線上;

(2)當最大時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)求函數(shù)的零點個數(shù);

(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,離心率為,右焦點到直線的距離為2.

1)求橢圓的方程;

2)橢圓下頂點為,直線)與橢圓相交于不同的兩點,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某班的50名學生進行不記名問卷調(diào)查,內(nèi)容為本周使用手機的時間長,如表:

時間長(小時)

女生人數(shù)

4

11

3

2

0

男生人數(shù)

3

17

6

3

1

(1)求這50名學生本周使用手機的平均時間長;

(2)時間長為的7名同學中,從中抽取兩名,求其中恰有一個女生的概率;

(3)若時間長為被認定“不依賴手機”,被認定“依賴手機”,根據(jù)以上數(shù)據(jù)完成列聯(lián)表:

不依賴手機

依賴手機

總計

女生

男生

總計

能否在犯錯概率不超過0.15的前提下,認為學生的性別與依賴手機有關系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,平面,底面為直角梯形,,,中點.

(1)求證:平面;

(2)若直線與平面所成角的正切值為,的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若曲線與曲線在公共點處有共同的切線,求實數(shù)的值;

(Ⅱ)在(Ⅰ)的條件下,試問函數(shù)是否有零點?如果有,求出該零點;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖2,在三棱錐A-BCD中,AB=CD=4, AC=BC=AD=BD=3.

(I)證明:ABCD;

(II) E在線段BC上,BE=2EC, F是線段AC的中點,求平面ADE與平面BFD所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E:=1(a>b>0)的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線l:y=-x+3與橢圓E有且只有一個公共點T.

(1)求橢圓E的方程及點T的坐標;

(2)設O是坐標原點,直線l'平行于OT,與橢圓E交于不同的兩點A,B,且與直線l交于點P,證明:存在常數(shù)λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.

查看答案和解析>>

同步練習冊答案