【題目】已知點,點是直線上的動點,過作直線, ,線段的垂直平分線與交于點.
(1)求點的軌跡的方程;
(2)若點是直線上兩個不同的點,且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
【答案】(1) ;(2) .
【解析】試題分析:(1)利用拋物線定義求解即可;
(2)設出的三個頂點的坐標,表示出的解析式,化簡之后可得為關于的方程的兩根,然后由韋達定理表示的長度,最后在中消去參數(shù),故可以得到的取值范圍.
試題解析: (1)據(jù)題設分析知,點的軌跡是以點為焦點,直線為準線的拋物線,所以曲線的方程為.
(2)設,點,點,
直線的方程為,
化簡,得,
又因為內(nèi)切圓的方程為.
所以圓心到直線的距離為1,即,
所以,
由題意,得,所以.
同理,有,
所以是關于的方程的兩根,
所以因為
所以.
因為,
所以.
直線的斜率,則,
所以.
因為函數(shù)在上單調(diào)遞增,所以當時, ,
所以,所以,
所以.所以的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在
之外的零件數(shù),求;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得, ,其中為抽取的第個零件的尺寸, .
用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計和(精確到0.01).
附:若隨機變量服從正態(tài)分布,則,
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】語文成績服從正態(tài)分布,數(shù)學成績的頻率分布直方圖如下:
(Ⅰ)如果成績大于135的為特別優(yōu)秀,這500名學生中本次考試語文、數(shù)學特別優(yōu)秀的大約各多少人?(假設數(shù)學成績在頻率分布直方圖中各段是均勻分布的)
(Ⅱ)如果語文和數(shù)學兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中的這些同學中隨機抽取3人,設三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學期望.
(附參考公式)若,則, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴重的城市和交通擁堵嚴重的城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):
若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此列聯(lián)表,并據(jù)此樣本分析是否有的把握認為城市擁堵與認可共享單車有關:
合計 | |||
認可 | |||
不認可 | |||
合計 |
附:參考數(shù)據(jù):(參考公式:)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點是, ,且橢圓經(jīng)過點.
(1)求橢圓的標準方程;
(2)若過橢圓的左焦點且斜率為1的直線與橢圓交于兩點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),是的導函數(shù).
(Ⅰ)當時,求證;
(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為橢圓的左焦點,且兩焦點與短軸的一個頂點構成一個等邊三角形,直線與橢圓有且僅有一個交點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與軸交于,過點的直線與橢圓交于兩不同點, ,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總人數(shù).現(xiàn)對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據(jù)對學生的了解,預估了每道題的難度,如下表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機抽取了10名學生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):
學生編號 題號 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學生每道題實測的答對人數(shù)及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數(shù);
題號 | 1 | 2 | 3 | 4 | 5 |
實測答對人數(shù) | |||||
實測難度 |
(Ⅱ)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;
(Ⅲ)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預估難度.規(guī)定:若,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com