【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級120名學(xué)生進(jìn)行一次測試,共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

題號

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

學(xué)生編號 題號

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測的答對人數(shù)及相應(yīng)的實(shí)測難度填入下表,并估計這120名學(xué)生中第5題的實(shí)測答對人數(shù);

題號

1

2

3

4

5

實(shí)測答對人數(shù)

實(shí)測難度

(Ⅱ)從編號為155人中隨機(jī)抽取2人,求恰好有1人答對第5題的概率;

Ⅲ)定義統(tǒng)計量,其中為第題的實(shí)測難度, 為第題的預(yù)估難度.規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.

【答案】(Ⅰ);(Ⅱ);見解析.

【解析】試題分析:(Ⅰ)根據(jù)表中數(shù)據(jù),估計120人中有人答對第5題

)根據(jù)古典概型計算得到;

根據(jù)方差計算公式求解即可.

試題解析:

(Ⅰ)每道題實(shí)測的答對人數(shù)及相應(yīng)的實(shí)測難度如下表:

題號

1

2

3

4

5

實(shí)測答對人數(shù)

8

8

7

7

2

實(shí)測難度

0.8

0.8

0.7

0.7

0.2

所以,估計120人中有人答對第5題

)記編號為的學(xué)生為,從這5人中隨機(jī)抽取2人,不同的抽取方法有10種.

其中恰好有1人答對第5題的抽取方法為, , , ,共6種.

所以,從抽樣的10名學(xué)生中隨機(jī)抽取2名答對至少4道題的學(xué)生,恰好有1人答對第5題的概率為

為抽樣的10名學(xué)生中第題的實(shí)測難度,用作為這120名學(xué)生第題的實(shí)測難度

因?yàn)?,所以,該次測試的難度預(yù)估是合理的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形是菱形, ,且, 交于點(diǎn) 上任意一點(diǎn).

(1)求證: ;

(2)已知二面角的余弦值為,若的中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)是直線上的動點(diǎn),過作直線, ,線段的垂直平分線與交于點(diǎn)

(1)求點(diǎn)的軌跡的方程;

(2)若點(diǎn)是直線上兩個不同的點(diǎn),且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若存在唯一整數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)為曲線在點(diǎn)處的切線,其中.

(Ⅰ)求直線的方程(用表示);

(Ⅱ)求直線軸上的截距的取值范圍;

(Ⅲ)設(shè)直線分別與曲線和射線)交于, 兩點(diǎn),求的最小值及此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極值;

(2)當(dāng)時,若直線 與曲線沒有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù).

(1)求解不等式的解集;

(2)若函數(shù)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某智能手機(jī)制作完成之后還需要依次通過三道嚴(yán)格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為,,每道程序是相互獨(dú)立的,且一旦審核不通過就停止審核,每部手機(jī)只有三道程序都通過才能出廠銷售.

(1)求審核過程中只通過兩道程序的概率;

(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷售的部數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個數(shù);

(2)若函數(shù)處取得極值,對任意的恒成立,,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案