17.已知log53=a,log54=b,則log5270可表示為( 。
A.$\frac{3}{2}$abB.3a+$\frac{2}$+1C.3a+$\frac{2}$D.a3+$\sqrt$+1

分析 由已知條件利用對數(shù)性質(zhì)、運算法則求解.

解答 解:∵log53=a,log54=b,
∴l(xiāng)og5270=log5(27×10)=log527+log510
=$lo{g}_{5}{3}^{3}$+log52+log5
=$3lo{g}_{5}3+\frac{1}{2}lo{g}_{5}4$+1
=3a+$\frac{2}$+1.
故選:B.

點評 本題考查對數(shù)化簡求值,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)性質(zhì)、運算法則的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖已知四邊形ABCD是菱形,P是ABCD所在平面外一點,且PB=PD=AB,M是PC的中點,
(1)求證:PA∥平面BDM
(2)求證:平面BDM⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知a>0,函數(shù)f(x)=lg(a•2x一a+4)在區(qū)間(-1,+∞)上有意義.
(1)求a的取值范圍;
(2)解關(guān)于x的不等式;x2-(a2+a-2)x+a(a2-2)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.己知f(1+x)=f(1-x),且f(-x)+f(x)=0,當x∈[1,3]時,f(x)=-x+2:
(1)求x∈[-1,1]時,f(x)的解析式;(2)求證:x=-1為f(x)的一條對稱軸;(3)求不等式f(x)≥$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0.|φ|<$\frac{π}{2}$)的部分函數(shù)圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=1-f(x),求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)y=(m2-3m+3)x${\;}^{\frac{{m}^{2}}{3}-1}$為冪函數(shù),求其解析式,并討論函數(shù)的單調(diào)性和奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)在區(qū)間(-∞,+∞)內(nèi)是增函數(shù),a、b∈R,證明:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.對于函數(shù)f(x)和g(x)定義運算“*”如下:設(shè)D為f(x)和g(x)的公共定義域,對下任意x∈D,當f(x)≤g(x)時,f(x)*g(x)=f(x),當f(x)>g(x)時,f(x)*g(x)=g(x),己知f(x)=$\sqrt{x+3}$,g(x)=3-x,則f(x)*g(x)的最大值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+ax+3,x∈R.
(1)若f(2-x)=f(2+x),求實數(shù)a的值?
(2)當x∈[-2,4]時,求函數(shù)f(x)的最大值?
(3)當x∈[-2,2]時,f(x)≥a恒成立,求實數(shù)a的最小值?

查看答案和解析>>

同步練習冊答案