6.已知復(fù)數(shù)z滿足(2-i)2•z=1,則z的虛部為(  )
A.$\frac{3}{25}i$B.$\frac{3}{25}$C.$\frac{4}{25}i$D.$\frac{4}{25}$

分析 利用復(fù)數(shù)的運算法則、虛部的定義即可得出.

解答 解:∵(2-i)2=3-4i,
∴$z=\frac{1}{3-4i}$=$\frac{3+4i}{(3-4i)(3+4i)}$=$\frac{3}{25}+\frac{4i}{25}$,
∴z的虛部為$\frac{4}{25}$,
故選:D.

點評 本題考查了復(fù)數(shù)的運算法則、虛部的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某人在5場投籃比賽中得分的莖葉圖如圖所示,若5場比賽的平均得分為11分,則則5場比賽得分的方差為$\frac{34}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知實數(shù)x,y滿足有不等式組$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的2倍,則實數(shù)a的值是( 。
A.2B.$\frac{1}{2}$C.$\frac{2}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.要得到函數(shù)y=cosx的圖象,只需將函數(shù)$y=sin(2x+\frac{π}{3})$的圖象上所有的點的( 。
A.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個單位長度
B.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向右平移$\frac{π}{3}$個單位長度
C.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個單位長度
D.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向右平移$\frac{π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,B=$\frac{π}{3}$.
(1)若b=3,2sinA=sinC,求a,c;
(2)若sinAsinC=$\frac{1}{2}$,且△ABC的面積為2$\sqrt{3}$,求b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知m,n,l是不同的直線,α,β是不同的平面,以下命題正確的是(  )
①若m∥n,m?α,n?β,則α∥β;
②若m?α,n?β,α∥β,l⊥m,則l⊥n;
③若m⊥α,n⊥β,α∥β,則m∥n;
④若α⊥β,m∥α,n∥β,則m⊥n.
A.②③B.C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{x}{lnx}$+ax,x>1.
(Ⅰ)若f(x)在(1,+∞)上單調(diào)遞減,求實數(shù)a的取值范圍;
(Ⅱ)若a=2,求函數(shù)f(x)的極小值;
(Ⅲ)若存在實數(shù)a使f(x)在區(qū)間(${e^{\frac{1}{n}}},{e^n}$)(n∈N*,且n>1)上有兩個不同的極值點,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖是一個幾何體的三視圖,則這個幾何體的表面積為24+π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}滿足an+1=an-an-1(n≥2),a1=1,a2=3,記Sn=a1+a2+…+an.則a3=2,S2015=2.

查看答案和解析>>

同步練習(xí)冊答案