【題目】在貫徹中共中央、國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位在某市定點(diǎn)幫扶某村戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這戶村民的年收入情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo).將指標(biāo)按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認(rèn)定該戶為絕對貧困戶,否則認(rèn)定該戶為相對貧困戶;當(dāng)時(shí),認(rèn)定該戶為亟待幫住戶”.工作組又對這戶家庭的受教育水平進(jìn)行評測,家庭受教育水平記為良好不好兩種.

1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為絕對貧困戶數(shù)與受教育水平不好有關(guān):

受教育水平良好

受教育水平不好

總計(jì)

絕對貧困戶

相對貧困戶

總計(jì)

2)上級部門為了調(diào)查這個(gè)村的特困戶分布情況,在貧困指標(biāo)處于的貧困戶中,隨機(jī)選取兩戶,用表示所選兩戶中亟待幫助戶的戶數(shù),求的分布列和數(shù)學(xué)期望.

附:,其中.

【答案】1)列聯(lián)表見解析,有;(2)分布列見解析,.

【解析】

1)根據(jù)題意填寫列聯(lián)表,計(jì)算,對照臨界值得出結(jié)論;

2)根據(jù)題意可得貧困指標(biāo)在的貧困戶共有(戶),亟待幫助戶共有(戶),

的可能值為,,,列出分布列,計(jì)算期望值即可.

1)由題意可知,絕對貧困戶有(戶),可得出如列聯(lián)表:

受教育水平

良好

受教育水平

不好

總計(jì)

絕對貧困戶

相對貧困戶

總計(jì)

故有的把握認(rèn)為絕對貧困戶數(shù)與受教育水平不好有關(guān).

2)貧困指標(biāo)在的貧困戶共有(戶),

亟待幫助戶共有(戶),

依題意的可能值為,,

,,

的分布列為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0)的左、右焦點(diǎn)分別為F1,F2,橢圓的焦距為2c,過C外一點(diǎn)P(c,2c)作線段PF1,PF2分別交橢圓C于點(diǎn)A、B,若|PA||AF1|,則_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上.這條直線被后人稱為三角形的“歐拉線”.在平面直角坐標(biāo)系中作,中,,點(diǎn),點(diǎn),且其“歐拉線”與圓相切,則該圓的直徑為(

A.1B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場更新技術(shù)培育了一批新型的盆栽果樹,這種盆栽果樹將一改陸地栽植果樹只在秋季結(jié)果的特性,能夠一年四季都有花、四季都結(jié)果.現(xiàn)為了了解果樹的結(jié)果情況,從該批果樹中隨機(jī)抽取了容量為120的樣本,測量這些果樹的高度(單位:厘米),經(jīng)統(tǒng)計(jì)將所有數(shù)據(jù)分組后得到如圖所示的頻率分布直方圖.

1)求;

2)求抽取的盆栽果樹的平均高度;

3)已知所抽取的樣本來自兩個(gè)實(shí)驗(yàn)基地,規(guī)定高度不低于40厘米的果樹為優(yōu)品盆栽,請將圖中列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)品盆栽兩個(gè)實(shí)驗(yàn)基地有關(guān)?

優(yōu)品

非優(yōu)品

合計(jì)

基地

60

基地

20

合計(jì)

附:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是,假設(shè)兩人射擊是否擊中目標(biāo)相互沒有影響,每人每次射擊是否擊中目標(biāo)相互也沒有影響.

1)求甲、乙兩人各射擊一次均擊中目標(biāo)的概率;

2)若乙在射擊中出現(xiàn)連續(xù)次未擊中目標(biāo)則會被終止射擊,求乙恰好射擊次后被終止射擊的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有2名男生、3名女生,在下列不同條件下,求不同的排列方法總數(shù).

(1)全體站成一排,甲不站排頭也不站排尾;

(2)全體站成一排,女生必須站在一起;

(3)全體站成一排,男生互不相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市教育與環(huán)保部門聯(lián)合組織該市中學(xué)參加市中學(xué)生環(huán)保知識團(tuán)體競賽,根據(jù)比賽規(guī)則,某中學(xué)選拔出8名同學(xué)組成參賽隊(duì),其中初中學(xué)部選出的3名同學(xué)有2名女生;高中學(xué)部選出的5名同學(xué)有3名女生,競賽組委會將從這8名同學(xué)中隨機(jī)選出4人參加比賽.

)設(shè)選出的4人中恰有2名女生,而且這2名女生來自同一個(gè)學(xué)部為事件,求事件的概率;

)設(shè)為選出的4人中女生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線的斜率為1的切線方程;

(Ⅱ)當(dāng)時(shí),求證:;

(Ⅲ)設(shè),記在區(qū)間上的最大值為Ma),當(dāng)Ma)最小時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:,直線l過定點(diǎn)

(1)若直線l與圓C相切,求直線l的方程;

(2)若直線l與圓C相交于P,Q兩點(diǎn),求的面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案