19.求曲線$\left\{\begin{array}{l}{x=2{e}^{t}}\\{y={e}^{-t}}\end{array}\right.$在t=0相應的點處的切線方程和法線方程.

分析 化為y=$\frac{2}{x}$,求出函數(shù)的導數(shù),求得切線的斜率和法線的斜率,再由點斜式方程,可得切線或法線方程.

解答 解:當t=0時,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即點的坐標為(2,1)
曲線$\left\{\begin{array}{l}{x=2{e}^{t}}\\{y={e}^{-t}}\end{array}\right.$消t得到,y=$\frac{2}{x}$,
∴y′=-$\frac{2}{{x}^{2}}$,
在點(2,1)處的切線斜率為k=-$\frac{1}{2}$,
即有在點(2,1)處的切線方程為y-1=-$\frac{1}{2}$(x-2),
即為x+2y-4=0;
在點(2,1)處的法線斜率為k=2,
即有在點(2,1)處的法線方程為y-1=2(x-2),
即為2x-y-3=0.

點評 本題參數(shù)方程化為直角坐標方程,導數(shù)的運用,求切線的斜率,考查直線方程的求法和法線方程的求法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.${∫}_{-1}^{1}$$\frac{{x}^{3}si{n}^{2}x}{{x}^{4}+{x}^{2}+1}$dx=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)=\sqrt{lg({2x-1})}$,求函數(shù)的定義域,并判斷它的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=|x+1|+|2x-1|的最小值為a.
(1)求a的值;
(2)已知m,n>0,m+n=a,求$\frac{1}{m}+\frac{4}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.寫出求滿足12+22+32+…+n2>20152的最小正整數(shù)n的算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求由參數(shù)方程x=${∫}_{0}^{t}$sinudu,y=${∫}_{0}^{t}$cosudu所確定的函數(shù)y=y(x)的導數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.求下列函數(shù)的導數(shù):
(1)y=sin43xcos34x;
(2)y=2(${e}^{\frac{x}{2}}+{e}^{{-}^{\frac{x}{2}}}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+x,g(x)=$\frac{1}{3}$a2x3+$\frac{1}{2}$bx2+x,其中a>0,若函數(shù)g(x)存在兩個極值點x1,x2,且點x1<x2
(1)求證:函數(shù)f(x)的導函數(shù)f′(x)在(-1,1)上是單調函數(shù);
(2)當a>1時,函數(shù)f(x)也存在兩個極值點x3,x4,且x3<x4,是判斷x1,x2,x3,x4的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.給定集合A={a1,a2,a3,…,an}(n∈N*?,n≥3),定義ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的個數(shù)為集合A兩元素和的容量,用L(A)表示,若A={2,4,6,8},則L(A)=5;若集合A={a1,a2,a 3,…,a 100},則L(A)的最小值為( 。
A.5050B.4950C.197D.195

查看答案和解析>>

同步練習冊答案