分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,能求出an=2n-1,從而$_{1}=\frac{1}{2}$,$_{2}=\frac{1}{4}$,由此能求出$_{n}=\frac{1}{{2}^{n}}$.
(2)由${c_n}=\frac{a_n}{b_n}$=$\frac{2n-1}{\frac{1}{{2}^{n}}}$=(2n-1)•2n,利用錯(cuò)位相減法能求出數(shù)列{cn}的前n項(xiàng)和.
解答 解:(1)∵數(shù)列{an}的前n項(xiàng)和為${S_n}={n^2}$,
∴當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-1,
當(dāng)n=1時(shí),a1=S1=1,
綜上an=2n-1,
∵數(shù)列{bn}為等比數(shù)列,且${a_1}=2{b_1},{\;}^{\;}{b_1}{b_2}=\frac{1}{8}$,
∴$_{1}=\frac{1}{2}$,$_{2}=\frac{1}{4}$,∴q=$\frac{1}{2}$,
∴$_{n}=\frac{1}{{2}^{n}}$.
(2)${c_n}=\frac{a_n}{b_n}$=$\frac{2n-1}{\frac{1}{{2}^{n}}}$=(2n-1)•2n,
∴數(shù)列{cn}的前n項(xiàng)和:
Tn=1×2+3×22+…+(2n-1)•2n,
2Tn=1×22+3×23+…+(2n-1)×2n+1,
兩式相減得:
-Tn=2+23+24+…+2n+1-(2n-1)×2n+1
=2+$\frac{8(1-{2}^{n-2})}{1-2}$-(2n-1)×2n+1
=-6-(2n-3)×2n+1,
∴Tn=(2n-3)×2n+1+6.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{19}$ | B. | $\frac{17}{18}$ | C. | $\frac{4}{19}$ | D. | $\frac{2}{17}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{37}$ | B. | $\sqrt{47}$ | C. | $\sqrt{57}$ | D. | $\sqrt{45}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $C_{2007}^4$ | B. | $C_{2007}^3$ | C. | $C_{2008}^4$ | D. | $C_{2008}^3$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com