已知雙曲線C:
x2
a2
-
y2
b2
=1的焦距為10,漸近線方程為y=2x,則C的方程為( 。
A、
x2
20
-
y2
5
=1
B、
x2
5
-
y2
20
=1
C、
x2
80
-
y2
20
=1
D、
x2
20
-
y2
80
=1
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得c=5,再由漸近線方程可得b=2a,再由a,b,c的關(guān)系,解得a,b.進(jìn)而得到雙曲線的方程.
解答: 解:雙曲線C:
x2
a2
-
y2
b2
=1的焦距為10,
則c=5,
由于漸近線方程為y=±
b
a
x,
則有
b
a
=2,
由c2=a2+b2=25,
解得a=
5
,b=2
5

則雙曲線的方程為
x2
5
-
y2
20
=1.
故選B.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查漸近線方程的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在行列式
.
3a5
0-41
-113
.
中,元素a的代數(shù)余子式值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

b1
2
+
b2
22
+…+
bn
2n
=2n,求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2-2x=0},B={x|y=
x+1
,x∈N},則A∩B=( 。
A、{0,1,2}
B、{0,-1,2}
C、{0,2}
D、{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間向量
a
=(-1,2,-3),則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
1
3x+
3
計(jì)算f(0)+f(1),猜想f(x)具備的一個(gè)性質(zhì)并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,S3=
13
9
,S6=
364
9
,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙M:(x+1)2+y2=1,⊙N:(x-1)2+y2=9,動(dòng)圓P與⊙M外切并且與⊙N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與⊙P、⊙M都相切的一條直線,當(dāng)⊙P的半徑最長(zhǎng)時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x的不等式|x-2|<a(a∈R)的解集為A,且
3
2
∈A,-
1
2
∉A
(1)?x∈R,|x-1|+|x-3|≥a2+a恒成立,且a∈N,求a的值
(2)若a+b=1,求
1
3|b|
+
|b|
a
的最小值,并指出取得最小值時(shí)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案