9.如圖,A-BCD是一個(gè)不透明的三棱錐木塊,點(diǎn)E,F(xiàn),G分別在AB,BC,CD上,且F,G是BC,CD的中點(diǎn),BE:EA=1:2,
(1)求證:FG∥平面BAD;
(2)設(shè)過點(diǎn)E,F(xiàn),G的平面交平面ABD于直線l.請(qǐng)作出直線l,寫出作法,并說明理由.

分析 (1)由中位線定理可知FG∥BD,故而FG∥平面BAD;
(2)取線段AD靠近D的三等分點(diǎn)P,則PE為所求直線l.

解答 解:(1)∵F,G是BC,CD的中點(diǎn),
∴FG∥BD,又FG?平面BAD,BD?平面BAD,
∴FG∥平面BAD.
(2)在AD上取一點(diǎn)P,使得DP:PA=1:2,連接EP,則直線PE為平面EFG與平面ABD的交線l.
理由如下:
∵$\frac{BE}{EA}=\frac{DP}{PA}=\frac{1}{2}$,
∴EP∥BD,又FG∥BD,
∴PE∥FG.
∴P∈平面EFG,又P∈平面ABD,
∴P為平面EFG和平面ABD的公共點(diǎn),
又E為平面EFG和平面ABD的公共點(diǎn),
∴平面EFG∩平面ABD=PE,
即PE為所求的交線l.

點(diǎn)評(píng) 本題考查了線面平行的判定,平面的基本性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.將由直線y=$\frac{2}{π}x$和曲線y=sinx,x∈[0,$\frac{π}{2}$]所圍成的平面圖形繞x軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)方程|x2+3x-3|=a的解的個(gè)數(shù)為m,則m不可能等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求橢圓$\left\{\begin{array}{l}{x=4cosθ+1}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù))的左焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等差數(shù)列{an},若a1=-11,a4+a6=-6,則an=2n-13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某市對(duì)該市高三年級(jí)的教學(xué)質(zhì)量進(jìn)行了一次檢測(cè),某校共有720名學(xué)生參加了本次考試,考試結(jié)束后,統(tǒng)計(jì)了學(xué)生在數(shù)學(xué)考試中,選擇選做題A,B,C三題(三道題中必須且只能選一題作答)的答卷份數(shù)如表:
題號(hào)ABC
答卷份數(shù)160240320
該校高三數(shù)學(xué)備課組為了解參加測(cè)試的學(xué)生對(duì)這三題的答題情況,現(xiàn)用分層抽樣的方法從720份答卷中抽出9份進(jìn)行分析.
(Ⅰ)若從選出的9份答卷中抽出3份,求這3份中至少有1份選擇A題作答的概率;
(Ⅱ)若從選出的9份答卷中抽出3份,記其中選擇C題作答的份數(shù)為X,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某人經(jīng)營一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)2元可購買一次游戲機(jī)會(huì),每次游戲中,顧客從裝有1個(gè)人黑球,3個(gè)紅球,6個(gè)白球的不透明袋子中依次不放回地摸出3個(gè)球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎(jiǎng),顧客獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)時(shí)分別可領(lǐng)取獎(jiǎng)金a元、10元、5元、1元.若經(jīng)營者將顧客摸出的3個(gè)球的顏色情況分成以下類別:A:1個(gè)黑球2個(gè)紅球;B:3個(gè)紅球;C:恰有1個(gè)白球;D:恰有2個(gè)白球;E:3個(gè)白球.且經(jīng)營者計(jì)劃將五種類別按照發(fā)生機(jī)會(huì)從小到大的順序分別對(duì)應(yīng)中一等獎(jiǎng)、中二等獎(jiǎng)、中三等獎(jiǎng)、中四等獎(jiǎng)、不中獎(jiǎng)五個(gè)層次.
(1)請(qǐng)寫出一至四等獎(jiǎng)分別對(duì)應(yīng)的類別(寫出字母即可);
(2)若經(jīng)營者不打算在這個(gè)游戲的經(jīng)營中虧本,求a的最大值;
(3)若a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),求他領(lǐng)取的獎(jiǎng)金的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1且4Sn=n(an+an+1).
(1)求a2,a3,a4;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明;
(3)設(shè)數(shù)列{$\frac{{a}^{n}}{{2}^{n}}$}的前n項(xiàng)和為Tn,求證Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知:x、y、z是正實(shí)數(shù),且x+2y+3z=1,
(1)求$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$的最小值;
(2)求證:x2+y2+z2≥$\frac{1}{14}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案