19.設(shè)X為一個離散型隨機變量,其分布列為,
 X 0 1 2
 P $\frac{1}{2}$ q2 1-2q
則 q=1-$\frac{\sqrt{2}}{2}$.

分析 由離散型隨機變量的分布列性質(zhì)能求出q的值.

解答 解:由離散型隨機變量的分布列知:
$\frac{1}{2}+{q}^{2}+1-2q$=1,
解得q=1-$\frac{\sqrt{2}}{2}$,或q=1+$\frac{\sqrt{2}}{2}$,
∵$\left\{\begin{array}{l}{0≤{q}^{2}≤1}\\{0≤1-2q≤1}\end{array}\right.$,
∴q=1-$\frac{\sqrt{2}}{2}$.
故答案為:1-$\frac{\sqrt{2}}{2}$.

點評 本題考查概率的求法,考查離散型隨機變量的分布列等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=|x+1|-|x-a|(a∈R)
(Ⅰ)當(dāng)a=l時,求不等式f(x)≤1的解集
(Ⅱ)對任意m∈R*,x∈R不等式f(x)≤m+$\frac{4}{m}$恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在R上的函數(shù)f(x)滿足$f(x)=\left\{\begin{array}{l}{log_2}(1-x),x≤0\\ f(x-6),x>0\end{array}\right.$則f(2019)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.5個黑球和4個白球從左到右任意排成一排,下列說法正確的是( 。
A.總存在一個白球,它右側(cè)的白球和黑球一樣多
B.總存在一個黑球,它右側(cè)的白球和黑球一樣多
C.總存在一個黑球,它右側(cè)的白球比黑球少一個
D.總存在一個白球,它右側(cè)的白球比黑球少一個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\sqrt{2}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{6}$對稱,且圖象上相鄰兩個最高點的距離為π
(Ⅰ)求ω和φ的值
(Ⅱ)當(dāng)x∈[0,$\frac{π}{2}$]時,求函數(shù)y=f(x+$\frac{π}{24}$)-$\sqrt{2}$f(x+$\frac{π}{6}$)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從學(xué)號為0~50的高一某班50名學(xué)生中隨機選取5名同學(xué)參加數(shù)學(xué)測試,采用系統(tǒng)抽樣的方法,則所選5名學(xué)生的學(xué)號可能是( 。
A.1,2,3,4,5B.2,4,6,8,10C.4,14,24,34,44D.5,16,27,38,49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a=$lo{g}_{\frac{1}{3}}2,b=lo{g}_{3}4,c=lo{g}_{3}2$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,D是AC邊的中點,設(shè)$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,則$\overrightarrow{BD}$=( 。
A.$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$B.$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$C.$\frac{1}{2}$$\overrightarrow b$-$\overrightarrow a$D.$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow a$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)是定義在R上的偶函數(shù),若對于x≥0,都有f(x+2)=-f(x)且當(dāng)x∈[0,2)時,f(x)=xex-1,則f(-2017)+f(2018)=e-2.

查看答案和解析>>

同步練習(xí)冊答案