【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對任意的 ,令
⊙
=mq-np,下面說法錯誤的是( )
A.若 與
共線,則
⊙
=0
B. ⊙
=
⊙
C.對任意的λ∈R,有 ⊙
=
⊙
)
D.( ⊙
)2+(
)2=|
|2|
|2
【答案】B
【解析】解:對于A,若 與
共線,則有
⊙
=mq-np=0,故A正確;
對于B,因?yàn)? ⊙
=pn-qm,而
⊙
=mq-np,所以有
⊙
⊙
,故選項(xiàng)B錯誤,
對于C, ⊙
=λqm﹣λpn,而
⊙
)=λ(qm﹣pn)=λqm﹣λpn,故C正確,
對于D,( ⊙
)2+(
)2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=|
|2|
|2 , D正確;
故選B.
根據(jù)題意對選項(xiàng)逐一分析.若 與
共線,則有
⊙
=mq-np=0,故A正確;
因?yàn)? ⊙
=pn-qm,而
⊙
=mq-np,所以有
⊙
⊙
,故選項(xiàng)B錯誤,
對于C, ⊙
=λqm﹣λpn,而
⊙
)=λ(qm﹣pn)=λqm﹣λpn,故C正確,
對于D,( ⊙
)2+(
)2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=|
|2|
|2 , D正確;
得到答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某成衣批發(fā)店為了對一款成衣進(jìn)行合理定價,將該款成衣按事先擬定的價格進(jìn)行試銷,得到了如下數(shù)據(jù):
批發(fā)單價x(元) | 80 | 82 | 84 | 86 | 88 | 90 |
銷售量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程 ,其中
(2)預(yù)測批發(fā)單價定為85元時,銷售量大概是多少件?
(3)假設(shè)在今后的銷售中,銷售量與批發(fā)單價仍然服從(1)中的關(guān)系,且該款成衣的成本價為40元/件,為使該成衣批發(fā)店在該款成衣上獲得更大利潤,該款成衣單價大約定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,
).
(1)當(dāng)時,討論函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)時,若
對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店銷售剛剛上市的某知名品牌的高三數(shù)學(xué)單元卷,按事先擬定的價格進(jìn)行5天試銷,每種單價試銷1天,得到如表數(shù)據(jù):
單價x(元) | 18 | 19 | 20 | 21 | 22 |
銷量y(冊) | 61 | 56 | 50 | 48 | 45 |
(1)求試銷5天的銷量的方差和y對x的回歸直線方程;
(2)預(yù)計今后的銷售中,銷量與單價服從(1)中的回歸方程,已知每冊單元卷的成本是14元,
為了獲得最大利潤,該單元卷的單價應(yīng)定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年被業(yè)界稱為(虛擬現(xiàn)實(shí)技術(shù))元年,未來
技術(shù)將給教育、醫(yī)療、娛樂、商業(yè)、交通旅游等多領(lǐng)域帶來極大改變,某
教育設(shè)備生產(chǎn)企業(yè)有甲、乙兩類產(chǎn)品,其中生產(chǎn)一件甲產(chǎn)品需
團(tuán)隊投入15天時間,
團(tuán)隊投入20天時間,總費(fèi)用10萬元,甲產(chǎn)品售價為15萬元/件;生產(chǎn)一件乙產(chǎn)品需
團(tuán)隊投入20天時間,
團(tuán)隊投入16天時間,總費(fèi)用15萬元,乙產(chǎn)品售價為25萬元/件,
、
兩個團(tuán)隊分別獨(dú)立運(yùn)作.現(xiàn)某客戶欲以不超過200萬元訂購該企業(yè)甲、乙兩類產(chǎn)品,要求每類產(chǎn)品至少各3件,在期限180天內(nèi),為使企業(yè)總效益最佳,則最后交付的甲、乙兩類產(chǎn)品數(shù)之和為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一個周期內(nèi)的圖象如圖所示,則函數(shù)的解析式為 . 直線y= 與函數(shù)y=f(x)(x∈R)圖象的所有交點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn)
,
,并且直線
平分圓
.
(1)求圓的方程;
(2)若直線與圓
交于
兩點(diǎn),是否存在直線
,使得
(
為坐標(biāo)原點(diǎn)),若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣lnx.
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間:
(3)設(shè)函數(shù)g(x)=f(x)﹣x2+ax,a>0,若x∈(O,e]時,g(x)的最小值是3,求實(shí)數(shù)a的值.(e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,討論
的零點(diǎn)個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com