在△ABC中,已知
cosC
cosB
=
2a-c
b
,則B的值是( 。
分析:利用正弦定理化簡已知的等式,整理后再利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式變形,通過sinA不為0,得到cosB的值,由B為三角形的內(nèi)角,求出B的值.
解答:解:根據(jù)正弦定理得:
cosC
cosB
=
2a-c
b
=
2sinA-sinC
sinB
,
cosC
cosB
=
2sinA-sinC
sinB
,即sinBcosC=2sinAcosB-cosBsinC,
整理得:sinBcosC+cosBsinC=32inAcosB,即sin(B+C)=2sinAcosB,
又A+B+C=π,即B+C=π-A,
∴sin(B+C)=sin(π-A)=sinA,
∴sinA=2sinAcosB,又sinA≠0,
∴cosB=
1
2
,又B為三角形的內(nèi)角,
B=
π
3
,
故選B.
點(diǎn)評(píng):本題考查了正弦、余弦定理,兩角和與差的正弦函數(shù)公式,誘導(dǎo)公式,同角三角函數(shù)間的基本關(guān)系,基本不等式,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知c=2acosB,則△ABC為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知c=10,A=45°,C=30°,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知c=
6
,A=45°,a=2,則B=
75°或15°
75°或15°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知c=
3
,b=1,B=30°
,求角A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知c=
3
,b=1,B=30°

(1)求出角C和A;
(2)求△ABC的面積S;
(3)將以上結(jié)果填入下表.
  C A S
情況①      
情況②      

查看答案和解析>>

同步練習(xí)冊(cè)答案