20.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)到直線x-y+2$\sqrt{2}$=0的距離為3,且過點(diǎn)(-1,-$\frac{\sqrt{6}}{2}$).
(1)求E的方程;
(2)設(shè)橢圓E的左頂點(diǎn)是A,直線l:x-my-t=0與橢圓E相交于不同的兩點(diǎn)M,N(M,N均與A不重合),且以MN為直徑的圓過點(diǎn)A,試判斷直線l是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo).

分析 (1)設(shè)右焦點(diǎn)為F(c,0),由$\frac{|c+2\sqrt{2}|}{\sqrt{2}}$=3,解得c=$\sqrt{2}$,a2=b2+2.又$\frac{1}{{a}^{2}}+\frac{3}{2^{2}}$=1,聯(lián)立解得即可得出橢圓E的標(biāo)準(zhǔn)方程.
(2)由x-my-t=0,可得x=my+t,代入橢圓方程可得:(m2+2)y2+2mty+t2-4=0,設(shè)M(x1,y1),N(x2,y2),以MN為直徑的圓過點(diǎn)A,k可得$\overrightarrow{AM}•\overrightarrow{AN}$=x1x2+2(x1+x2)+4+y1y2=0,把根與系數(shù)的關(guān)系代入即可得出.

解答 解:(1)設(shè)右焦點(diǎn)為F(c,0),則$\frac{|c+2\sqrt{2}|}{\sqrt{2}}$=3,解得c=$\sqrt{2}$,
∴a2=b2+2.又$\frac{1}{{a}^{2}}+\frac{3}{2^{2}}$=1,
聯(lián)立解得b2=2,a2=4,
∴橢圓E的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
(2)由x-my-t=0,可得x=my+t,代入橢圓方程可得:(m2+2)y2+2mty+t2-4=0,
△=4m2t2-4(m2+2)(t2-4),
設(shè)M(x1,y1),N(x2,y2),則y1+y2=$\frac{-2mt}{{m}^{2}+2}$,y1y2=$\frac{{t}^{2}-4}{{m}^{2}+2}$,
故x1+x2=m(y1+y2)+2t=$\frac{4t}{{m}^{2}+2}$,x1x2=(my1+t)(my2+t)=m2y1y2+mt(y1+y2)+t2=$\frac{2{t}^{2}-4{m}^{2}}{{m}^{2}+2}$.
由以MN為直徑的圓過點(diǎn)A,
∴$\overrightarrow{AM}•\overrightarrow{AN}$=(x1+2,y1)•(x2+2,y2)=x1x2+2(x1+x2)+4+y1y2=$\frac{2{t}^{2}-4{m}^{2}}{{m}^{2}+2}$+2×$\frac{4t}{{m}^{2}+2}$+4+$\frac{{t}^{2}-4}{{m}^{2}+2}$=$\frac{3{t}^{2}+8t+4}{{m}^{2}+2}$=0,
∵M(jìn),N均與A不重合,∴t≠-2,解得t=-$\frac{2}{3}$.
因此直線l的方程為:x-my+$\frac{2}{3}$=0,因此直線l經(jīng)過定點(diǎn)T$(-\frac{2}{3},0)$,由于定點(diǎn)在橢圓的內(nèi)部,因此滿足△>0,
∴直線l經(jīng)過定點(diǎn)T$(-\frac{2}{3},0)$.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、數(shù)量積運(yùn)算性質(zhì)、圓的性質(zhì)、直線經(jīng)過定點(diǎn)問題,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.8個相同的球放入標(biāo)號為1,2,3的三個盒子中,每個盒子中至少有一個,共有21種不同的放法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線y2=2px(p>o)的準(zhǔn)線被圓x2+y2+2x-3=0所截得的線段長為4,則p=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=|x+2|-|x-a|(a∈R,a>0),
(Ⅰ) 若f(x)的最小值是-3,求a的值;
(Ⅱ) 求關(guān)于x的不等式|f(x)|≤2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,短軸兩個端點(diǎn)為A,B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上一點(diǎn),M($\frac{1}{2}$,0)為橢圓長軸上一點(diǎn),求|PM|的最大值與最小值;
(3)設(shè)Q是橢圓外C的動點(diǎn),滿足|$\overrightarrow{{F_1}Q}$|=4,點(diǎn)R是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足$\overrightarrow{RT}$•$\overrightarrow{T{F_2}}$=0,|$\overrightarrow{T{F_2}}$|≠0,求點(diǎn)T的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓M的離心率為$\frac{1}{2}$,橢圓上異于長軸頂點(diǎn)的任意點(diǎn)A與左右兩焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形中面積的最大值為$\sqrt{3}$.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)若A與C是橢圓M上關(guān)于x軸對稱的兩點(diǎn),連接CF2與橢圓的另一交點(diǎn)為B,求證:直線AB與x軸交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線G:$\frac{x^2}{a^2}-{y^2}$=1(a>0)的左頂點(diǎn)為A,若雙曲線G的一條漸近線與直線AM平行,則實(shí)數(shù)a的值為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={2,3,4,6},B={2,4,5,7},則A∩B的子集的個數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2015年7月,“國務(wù)院關(guān)于積極推進(jìn)‘互聯(lián)網(wǎng)+’行動的指導(dǎo)意見”正式公布,在“互聯(lián)網(wǎng)+”的大潮下,我市某高中“微課堂”引入教學(xué),某高三教學(xué)教師錄制了“導(dǎo)數(shù)的應(yīng)用”與“概率的應(yīng)用”兩個單元的微課視頻放在所教兩個班級(A班和B班)的網(wǎng)頁上,A班(實(shí)驗(yàn)班,基礎(chǔ)較好)共有學(xué)生60人,B班(普通班,基礎(chǔ)較差)共有學(xué)生60人,該教師規(guī)定兩個班的每一名同學(xué)必須在某一天觀看其中一個單元的微課視頻,第二天經(jīng)過統(tǒng)計(jì),A班有40人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他20人觀看了“概率的應(yīng)用”視頻,B班有25人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他35人觀看了“概率的應(yīng)用”視頻.
(1)完成下列2×2列聯(lián)表:
 觀看“導(dǎo)數(shù)的應(yīng)用”
視頻人數(shù)
觀看“概率的應(yīng)用”
視頻人數(shù)
總計(jì)
A班   
B班   
總計(jì)   
判斷是否有99%的把握認(rèn)為學(xué)生選擇兩個視頻中的哪一個與班級有關(guān)?
(2)在A班中用分層抽樣的方法抽取6人進(jìn)行學(xué)習(xí)效果調(diào)查;
①求抽取的6人中觀看“導(dǎo)數(shù)的應(yīng)用”視頻的人數(shù)及觀看“概率的應(yīng)用”視頻的人數(shù);
②在抽取的6人中再隨機(jī)抽取3人,設(shè)3人中觀看“導(dǎo)數(shù)的應(yīng)用”視頻的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
參考公式:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
參考數(shù)據(jù):
P(x2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

同步練習(xí)冊答案