5.已知中心在坐標(biāo)原點,焦點在x軸上的橢圓M的離心率為$\frac{1}{2}$,橢圓上異于長軸頂點的任意點A與左右兩焦點F1,F(xiàn)2構(gòu)成的三角形中面積的最大值為$\sqrt{3}$.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)若A與C是橢圓M上關(guān)于x軸對稱的兩點,連接CF2與橢圓的另一交點為B,求證:直線AB與x軸交于定點.

分析 (Ⅰ)設(shè)橢圓M的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由題意知:$\frac{c}{a}=\frac{1}{2}$,$\frac{1}{2}(2c)b=\sqrt{3}$,a2=b2+c2,聯(lián)立解出即可得出.
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),C(x1,-y1),AB:y=kx+m.代入$\frac{x^2}{4}+\frac{y^2}{3}=1$,可得(4k2+3)x2+8kmx+4m2-12=0.利用根與系數(shù)的關(guān)系、斜率計算公式可得m,k的關(guān)系式,即可得出.

解答 解:(Ⅰ)設(shè)橢圓M的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意知:$\frac{c}{a}=\frac{1}{2}$,$\frac{1}{2}(2c)b=\sqrt{3}$,a2=b2+c2,聯(lián)立解得c=1,a=2,$b=\sqrt{3}$.
∴橢圓M的標(biāo)準(zhǔn)方程是$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),C(x1,-y1),AB:y=kx+m.
將y=kx+m,代入$\frac{x^2}{4}+\frac{y^2}{3}=1$,可得(4k2+3)x2+8kmx+4m2-12=0.
則${x_1}+{x_2}=-\frac{8km}{{4{k^2}+3}}$,${x_1}{x_2}=\frac{{4{m^2}-12}}{{4{k^2}+3}}$.
∵B,C,F(xiàn)2共線,∴${k_{B{F_2}}}={k_{C{F_2}}}$,即$\frac{{-(k{x_1}+m)}}{{{x_1}-1}}=\frac{{k{x_2}+m}}{{{x_2}-1}}$.
整理得2kx1x2+(m-k)(x1+x2)-2m=0,
∴$2k\frac{{4{m^2}-12}}{{4{k^2}+3}}-(m-k)\frac{8km}{{4{k^2}+3}}-2m=0$,m=-4k.
AB:y=k(x-4),與x軸交于定點P(4,0).

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、斜率計算公式、直線經(jīng)過定點問題、三角形面積計算公式,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知集合A={x|-1<x<2},Z是整數(shù)集,則A∩Z={0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線3x-4y+4=0與拋物線x2=4y、圓x2+(y-1)2=1從左至右的交點依次為A,B,C,D,則$\frac{{|{CD}|}}{{|{AB}|}}$的值為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若動點M到定點A(0,1)與定直線l:y=3的距離之和為4.
(1)求點M的軌跡方程,并畫出方程的曲線草圖;
(2)記(1)得到的軌跡為曲線C,若曲線C上恰有三對不同的點關(guān)于點B(0,t)(t∈R)對稱,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點到直線x-y+2$\sqrt{2}$=0的距離為3,且過點(-1,-$\frac{\sqrt{6}}{2}$).
(1)求E的方程;
(2)設(shè)橢圓E的左頂點是A,直線l:x-my-t=0與橢圓E相交于不同的兩點M,N(M,N均與A不重合),且以MN為直徑的圓過點A,試判斷直線l是否過定點,若過定點,求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C的對邊分別是a,b,c,已知cos2A=-$\frac{1}{3}$,c=$\sqrt{3}$,sinA=$\sqrt{6}$sinC.
(Ⅰ)求a的值;
(Ⅱ) 若角A為銳角,求b的值及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長為4,其上頂點到直線3x+4y-1=0的距離等于$\frac{3}{5}$.
(1)求橢圓C的方程;
(2)若直線l與橢圓C交于A,B兩點,交x軸的負(fù)半軸于點E,交y軸于點F(點E,F(xiàn)都不在橢圓上),且$\overrightarrow{FA}$=λ1$\overrightarrow{AE}$,$\overrightarrow{FB}$=λ2$\overrightarrow{BE}$,λ12=-8,證明:直線l恒過定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校高三年級在一次質(zhì)量考試中,考生成績情況如表所示:
 成績
累別
[0,400)[400,480)[480,550)[550,750)
文科考生(人數(shù))673519z
理科考生(人數(shù))53y9
已知用分層抽樣的方法(按文理科分層)在不低于550分的考生中隨機抽取5名考生進行質(zhì)量分析,其中文科考生抽取了2名,并且該校不低于480分的文科理科考生人數(shù)之比為1:2,不低于400分的文科理科考生人數(shù)之比為2:5.
(1)求本次高三參加考試的總?cè)藬?shù);
(2)如圖是其中6名學(xué)生的數(shù)學(xué)成績的莖葉圖,現(xiàn)從這6名考生中隨機抽取3名考生進行座談,求抽取的考生數(shù)學(xué)成績均不低于135分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,頂點A(a,0),B(0,b),中心O到直線AB的距離為$\frac{2}{\sqrt{3}}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C上一動點P滿足:$\overrightarrow{OP}$=λ$\overrightarrow{OM}$+2μ$\overrightarrow{ON}$,其中M,N是橢圓C上的點,直線OM與ON的斜率之積為-$\frac{1}{2}$,若Q(λ,μ)為一動點,E1(-$\frac{\sqrt{3}}{2}$,0),E2($\frac{\sqrt{3}}{2}$,0)為兩定點,求|QE1|+|QE2|的值.

查看答案和解析>>

同步練習(xí)冊答案