【題目】港珠澳大橋于2018年10月2刻日正式通車,它是中國(guó)境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長(zhǎng)55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對(duì)大橋某路段上1000輛汽車的行駛速度進(jìn)行抽樣調(diào)查.畫出頻率分布直方圖(如圖),根據(jù)直方圖估計(jì)在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為( 。

A. 300,B. 300,C. 60,D. 60,

【答案】B

【解析】

由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時(shí)利用頻率分布直方圖能求行駛速度超過的頻率.

由頻率分布直方圖得:

在此路段上汽車行駛速度在區(qū)間的頻率為

∴在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,

行駛速度超過的頻率為:

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{}的首項(xiàng)a12,前n項(xiàng)和為,且數(shù)列{}是以為公差的等差數(shù)列·

1)求數(shù)列{}的通項(xiàng)公式;

2)設(shè),,數(shù)列{}的前n項(xiàng)和為,

①求證:數(shù)列{}為等比數(shù)列,

②若存在整數(shù)m,n(mn1),使得,其中為常數(shù),且2,求的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如圖:

每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為X(單位:元),求X的分布列和數(shù)學(xué)期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間和極值點(diǎn);

2)若單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了了解該市教師年齡分布情況,對(duì)年齡在內(nèi)的5000名教師進(jìn)行了抽樣統(tǒng)計(jì),根據(jù)分層抽樣的結(jié)果,統(tǒng)計(jì)員制作了如下的統(tǒng)計(jì)表格:

年齡區(qū)間

教師人數(shù)

2000

1300

樣本人數(shù)

130

由于不小心,表格中部分?jǐn)?shù)據(jù)被污染,看不清了,統(tǒng)計(jì)員只記得年齡在的樣本人數(shù)比年齡在的樣本人數(shù)多10,根據(jù)以上信息回答下列問題:

1)求該市年齡在的教師人數(shù);

2)試根據(jù)上表做出該市教師按照年齡的人數(shù)頻率分布直方圖,并求該市教師年齡的平均數(shù)及方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,平行四邊形中,,,中點(diǎn).將沿折起,使平面平面,得到如圖②所示的四棱錐.

1)求證:平面平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線由左半橢圓和圓軸右側(cè)的部分連接而成, , 的公共點(diǎn),點(diǎn) (均異于點(diǎn), )分別是, 上的動(dòng)點(diǎn).

Ⅰ)若的最大值為,求半橢圓的方程;

Ⅱ)若直線過點(diǎn),且, ,求半橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),曲線在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值,并求的單調(diào)區(qū)間;

(2)試比較的大小,并說明理由;

(3)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案