【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點(diǎn)在曲線段上,點(diǎn)在線段上).已知, ,其中曲線段是以為頂點(diǎn), 為對(duì)稱軸的拋物線的一部分.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求出曲線段與線段的方程;
(2)求該廠家廣告區(qū)域的最大面積.
【答案】(1)直角坐標(biāo)系見解析; 曲線段的方程為: ;
線段的方程為: .
(2) .
【解析】試題分析:(1)以AB為x軸,DA為y軸建立平面直角坐標(biāo)系,則A(0,0),B(6,0),C(6,-12),D(0,-6).設(shè)曲線AC的方程x2=-2py,(p>0,0≤x≤6).代入C坐標(biāo)即可求得p,即可求出曲線段的方程,由DC兩點(diǎn)坐標(biāo)即可求出線段的方程;
(2)設(shè)出F點(diǎn)橫坐標(biāo)a,將廠家廣告區(qū)域的面積表示為a的函數(shù),求出函數(shù)的最大值即可.
試題解析:(1)以直線為軸,直線為軸建立平面直角坐標(biāo)系(如圖所示).
則, , , ,
曲線段的方程為: ;
線段的方程為: ;
(2)設(shè)點(diǎn),則需,即,
則, , .
∴, , ,
則廠家廣告區(qū)域的面積
,
∴,
令,得, .
∴在上是增函數(shù),在上是減函數(shù).
∴.
∴廠家廣告區(qū)域的面積最大值是.
點(diǎn)睛:本題利用已知函數(shù)模型解決實(shí)際問(wèn)題,關(guān)鍵是合理建系設(shè)出點(diǎn)坐標(biāo)即可表示出面積的表達(dá)式,利用導(dǎo)數(shù)研究單調(diào)性即可求出最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且在y軸上截得的弦MN的長(zhǎng)為4.
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)過(guò)點(diǎn)的直線與曲線C交于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)E(,0),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高中年級(jí)開設(shè)了豐富多彩的校本課程,甲、乙兩班各隨機(jī)抽取了5名學(xué)生的學(xué)分,用莖葉圖表示.,分別表示甲、乙兩班各自5名學(xué)生學(xué)分的標(biāo)準(zhǔn)差,則_______.(填“”“<”或“=”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒(méi)有紅球,則不獲獎(jiǎng).
(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;
(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直平行六面體中,為棱上任意一點(diǎn),為底面(除外)上一點(diǎn),已知在底面上的射影為,若再增加一個(gè)條件,就能得到,現(xiàn)給出以下條件:
①;②在上;③平面;④直線和在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認(rèn)為正確的都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】質(zhì)監(jiān)部門從某超市銷售的甲、乙兩種食用油中分別各隨機(jī)抽取100桶檢測(cè)某項(xiàng)質(zhì)量指標(biāo),由檢測(cè)結(jié)果得到如下的頻率分布直方圖:
(Ⅰ)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為,,試比較,的大。ㄖ灰髮懗龃鸢福
(Ⅱ)估計(jì)在甲、乙兩種食用油中隨機(jī)抽取1捅,恰有一桶的質(zhì)量指標(biāo)大于20;
(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,設(shè)表示從乙種食用油中隨機(jī)抽取10桶,其質(zhì)量指標(biāo)值位于(14.55,38.45)的桶數(shù),求的數(shù)學(xué)期望.
注:①同一組數(shù)據(jù)用該區(qū)問(wèn)的中點(diǎn)值作代表,計(jì)算得
②若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年7月24日,長(zhǎng)春長(zhǎng)生生物科技有限責(zé)任公司先被查出狂犬病疫苗生產(chǎn)記錄造假,因此,疫苗在上市前必須經(jīng)過(guò)嚴(yán)格的檢測(cè),以保證疫苗使用的安全和有效.某生物制品研究所將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如表:現(xiàn)從所有試驗(yàn)小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 20 | x | A |
注射疫苗 | 30 | y | B |
總計(jì) | 50 | 50 | 100 |
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
(1)求2×2列聯(lián)表中的數(shù)據(jù)的值;
(2)能否有99.9%把握認(rèn)為注射此種疫苗有效?
附:,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集具有性質(zhì);對(duì)任意的、,,與兩數(shù)中至少有一個(gè)屬于.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說(shuō)明理由;
(2)證明:,且;
(3)當(dāng)時(shí),若,求集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com