【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
【答案】(1); (2)60; (3)
【解析】
(1)根據(jù)頻率,頻數(shù)和樣本容量之間的關(guān)系即頻率等于頻數(shù)除以樣本容量,寫出算式,求出式子中的字母的值;(2)根據(jù)該校高三學(xué)生有240人,分組[10,15)內(nèi)的頻率是0.25,估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為60人;(3)這個樣本參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生共有m+2=6人,設(shè)出在區(qū)間[20,25)內(nèi)的人為a1,a2,a3,a4,在區(qū)間[25,30)內(nèi)的人為b1,b2,列舉出所有事件和滿足條件的事件,得到概率.
(1)由分組[10,15)內(nèi)的頻數(shù)是10,頻率是0.25知,,
∴M=40.
∵頻數(shù)之和為40,
∴10+24+m+2=40,m=4..
∵a是對應(yīng)分組[15,20)的頻率與組距的商,
∴
(2)因為該校高三學(xué)生有240人,分組[10,15)內(nèi)的頻率是0.25,
∴估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為60人.
(3)這個樣本參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生共有m+2=6人,
設(shè)在區(qū)間[20,25)內(nèi)的人為a1,a2,a3,a4,在區(qū)間[25,30)內(nèi)的人為b1,b2.
則任選2人共有(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2)15種情況,
而兩人都在[25,30)內(nèi)只能是(b1,b2)一種,
∴所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中, , ,以為直徑的圓記為圓,圓過原點的切線記為,若以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)若過點,且與直線垂直的直線與圓交于, 兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的長軸長為4,離心率為,過點的直線l交橢圓于兩點,與x軸交于P點,點關(guān)于軸的對稱點為,直線交軸于點.
(1)求橢圓方程;
(2)求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在上的奇函數(shù),對,均有,已知當(dāng)時, ,則下列結(jié)論正確的是( )
A. 的圖象關(guān)于對稱 B. 有最大值1
C. 在上有5個零點 D. 當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點在曲線段上,點在線段上).已知, ,其中曲線段是以為頂點, 為對稱軸的拋物線的一部分.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求出曲線段與線段的方程;
(2)求該廠家廣告區(qū)域的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù))
寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換后得到曲線,設(shè)為上任意一點,
求的最小值,并求相應(yīng)的點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若存在使得成立,求實數(shù)的取值范圍;
(Ⅱ)求證:當(dāng)時,在(1)的條件下, 成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下列結(jié)論正確的是( )
A. 導(dǎo)函數(shù)為
B. 函數(shù)f(x)的圖象關(guān)于直線對稱
C. 函數(shù)f(x)在區(qū)間上是增函數(shù)
D. 函數(shù)f(x)的圖象可由函數(shù)y=3cos 2x的圖象向右平移個單位長度得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點).
(1)試求拋物線的方程;
(2)已知點兩點在拋物線上,是以點為直角頂點的直角三角形.
①求證:直線恒過定點;
②過點作直線的垂線交于點,試求點的軌跡方程,并說明其軌跡是何種曲線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com