分析 (1)由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.
(2)由條件利用二倍角公式求得sin2α的值,可得cos2α的值,再利用兩角和的正弦公式求得sin(2α+$\frac{π}{4}$)的值.
解答 解:(1)∵sinα+2cosα=0,∴tanα=-2,
∴sin2α+cos2α=$\frac{2sinαcosα{+cos}^{2}α{-sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{2tanα+1{-tan}^{2}α}{{tan}^{2}α+1}$=$\frac{-4+1-4}{4+1}$=-$\frac{7}{5}$.
(2)∵tanα+cotα=$\frac{1}{sinαcosα}$=$\frac{5}{2}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),∴sinαcosα=$\frac{2}{5}$,2α∈($\frac{π}{2}$,π),
∴sin2α=2sinαcosα=$\frac{4}{5}$,cos2α=-$\sqrt{{1-sin}^{2}2α}$=-$\frac{3}{5}$,
∴sin(2α+$\frac{π}{4}$)=sin2αcos$\frac{π}{4}$+cos2αsin$\frac{π}{4}$=$\frac{4}{5}•\frac{\sqrt{2}}{2}$-$\frac{3}{5}•\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{5}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式,兩角和的正弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 零向量平行于任何向量 | |
B. | 對(duì)于平面上意三點(diǎn)A,B,C,一定有$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$ | |
C. | 若$\overrightarrow{AB}$=m$\overrightarrow{CD}$(m∈R),則$\overrightarrow{AB}$∥$\overrightarrow{CD}$ | |
D. | 若$\overrightarrow{a}$=m$\overrightarrow{i}$,$\overrightarrow$=n$\overrightarrow{j}$,則當(dāng)m=n時(shí),$\overrightarrow{a}=\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com