17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短軸長為2,離心率$e=\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)若斜率為k的直線過點M(2,0),且與橢圓C相交于A,B兩點.試求k為何值時,三角形OAB是以O為直角頂點的直角三角形.

分析 (1)由橢圓短軸長為2,離心率$e=\frac{{\sqrt{2}}}{2}$,列出方程組,求出a,b,由此能求出橢圓方程.
(2)設A(x1,y1),B(x2,y2),直線AB的方程為y=k(x-2),代入橢圓$\frac{{x}^{2}}{2}$+y2=1中,得到關(guān)于x的一元二次方程,由判別式求出k的取值范圍,和用k表示的x1+x2,x1x2的表達式,根據(jù)向量垂直的坐標表示的充要條件列出關(guān)于k的方程,求解即可.

解答 解:(1)∵橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短軸長為2,離心率$e=\frac{{\sqrt{2}}}{2}$,
∴$\left\{\begin{array}{l}{2b=2}\\{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,
解得a2=2,b2=1,
∴橢圓方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1.
(2)由已知直線AB的斜率存在,設AB的方程為:y=k(x-2),
由$\left\{\begin{array}{l}{y=k(x-2)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(1+2k2)x2-8k2x+8k2-2=0,
∵斜率為k的直線過點M(2,0),且與橢圓C相交于A,B兩點,
∴△=64k4-4(1+2k2)(8k2-2)>0,
解得:${k}^{2}<\frac{1}{2}$,即k∈(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
設A(x1,y1),B(x2,y2),${x}_{1}+{x}_{2}=\frac{8{k}^{2}}{1+2{k}^{2}}$,${x}_{1}{x}_{2}=\frac{8{k}^{2}-2}{1+2{k}^{2}}$,
∵O為直角頂點,∴$\overrightarrow{OA}•\overrightarrow{OB}={x}_{1}{y}_{1}+{x}_{2}{y}_{2}=0$,
∵y1y2=k(x1-2)•k(x2-2),
∴$\frac{8{k}^{2}-2}{1+2{k}^{2}}+\frac{4{k}^{2}}{1+2{k}^{2}}$=0,解得k=$±\frac{\sqrt{5}}{5}$,滿足k2$<\frac{1}{2}$,∴k=$±\frac{{\sqrt{5}}}{5}$.

點評 本題考查橢圓方程的求法,考查滿足條件的實數(shù)值的求法,是中檔題,解題時要認真審題,注意橢圓性質(zhì)、根的判別式、韋達定理、向量垂直等知識點的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,A,B,C,D為平面四邊形ABCD的四個內(nèi)角.
(1)證明:tan$\frac{A}{2}$=$\frac{1-cosA}{sinA}$.
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan$\frac{A}{2}$+tan$\frac{C}{2}$的值.
(3)若A+C=180°,AB=a,BC=b,CD=c,AD=d,記p=$\frac{a+b+c+d}{2}$,四邊形ABCD的面積為S,求證:S=$\sqrt{(p-a)(p-b)(p-c)(p-d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=$\frac{x}{{e}^{x}}$+sin2x,則$\underset{lim}{△x→0}$$\frac{f(△x)-f(0)}{△x}$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知點O為坐標原點,橢圓C$:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,點$(\sqrt{3},\frac{1}{2})$在橢圓C上.直線l過點(1,1),且與橢圓C交于A,B兩點.
(I)求橢圓C的方程;
(Ⅱ)橢圓C上是否存在一點P,使得$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OP}$?若存在,求出此時直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.橢圓$\frac{x^2}{m}+\frac{y^2}{20}=1$的焦距為8,則m的值等于( 。
A.36或4B.6C.$2\sqrt{21}$D.84

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx+ax,a∈R.
(I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)的兩個零點為x1,x2,且$\frac{x_2}{x_1}≥{e^2}$,求證:$({{x_1}-{x_2}})f'({{x_1}+{x_2}})>\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,圓O的半徑為2,圓上一點P從A出發(fā),繞著點O順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,記∠AOP為x(x∈[0,2π]),P在OA上的射影為M,記f(x)=$\overrightarrow{OP}$•$\overrightarrow{OM}$-1,那么函數(shù)f(x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知全集U=R,集合A={-1,1,3,5},集合B={x∈R|x≤2},則圖中陰影部分表示的集合(  )
A.{-1,1}B.{3,5}C.{-1,1}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓x2+$\frac{{y}^{2}}{2}$=1半長軸上有一點G(0,a)(a為(0,$\sqrt{2}$)內(nèi)一個常數(shù)),過G作斜率為k的直線,交橢圓于P(x1,y1),Q(x2,y2)兩點.
(1)用k,a表示|x1-x2|;
(2)當G為橢圓焦點,且k變動時,求△OPQ面積的最大值.

查看答案和解析>>

同步練習冊答案