下列6個命題中正確命題個數(shù)是(  )
(1)第一象限角是銳角
(2)y=sin(
π
4
-2x)的單調(diào)增區(qū)間是(kπ+
3
8
π,kπ+
7
8
π),k∈Z
(3)角α終邊經(jīng)過點(a,a)(a≠0)時,sinα+cosα=
2

(4)若y=
1
2
sin(ωx)的最小正周期為4π,則ω=
1
2

(5)若cos(α+β)=-1,則sin(2α+β)+sinβ=0
(6)若定義在R上函數(shù)f(x)滿足f(x+1)=-f(x),則y=f(x)是周期函數(shù).
A、1個B、2個C、3個D、4個
考點:命題的真假判斷與應(yīng)用
專題:證明題,簡易邏輯
分析:對6個命題一一驗證,可以舉反例來簡化判斷過程.
解答: 解:361°是第一象限角但不是銳角,故(1)不正確;
(2)y=sin(
π
4
-2x)的單調(diào)增區(qū)間是(kπ+
3
8
π,kπ+
7
8
π),k∈Z,正確;
角α終邊經(jīng)過點(a,a)(a≠0)時,sinα+cosα=
2
或-
2
,故(3)不正確;
若y=
1
2
sin(ωx)的最小正周期為4π,則ω=±
1
2
,故(4)錯誤;
若cos(α+β)=-1,則sin(2α+β)+sinβ=sin(2π-β)+sinβ=0,成立,故(5)正確;
若定義在R上函數(shù)f(x)滿足f(x+1)=-f(x),則可得f(x+2)=f(x),則y=f(x)是周期函數(shù),故(6)正確.
故選C.
點評:本題借助命題真假性判斷,實質(zhì)上考查了三角函數(shù)部分的相關(guān)性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x-1≥0
2y-x≥0
2x+y≤10
,則m=2x-y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某設(shè)備的使用年限與所支出的維修費用的統(tǒng)計數(shù)據(jù)如下表:
使用年限x(單位:年)23456
維修費用y(單位:萬元)1.54.55.56.57.0
根據(jù)上表可得回歸直線方程為:
y
=1.3x+
a
,據(jù)此模型預(yù)測,若使用年限為8年,估計維修費用約為( 。
A、10.2萬元
B、10.6萬元
C、11.2萬元
D、11.6萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=cos(
π
2
-2x),下列選項中正確的是( 。
A、f(x)在(
π
4
, 
π
2
)
上是遞增的
B、f(x)的圖象關(guān)于原點對稱
C、f(x)的最小正周期為2π
D、f(x)的最大值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,棱長AB=2,點E是棱C1D1的中點,則異面直線B1E和BC1所成角的余弦值為( 。
A、
15
5
B、
10
5
C、
15
10
D、
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0、1表示沒有擊中目標(biāo),2、3、4、5、6、7、8、9表示擊中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為( 。
A、0.852
B、0.819 2
C、0.8
D、0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線的傾斜角為135°,在x軸上的截距為2,則此直線方程為(  )
A、y=x+2.
B、y=x-2
C、y=-x+2
D、y=-x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2b2=a2+1,則a2+4b2-4ab的最小值是( 。
A、-
2
2
B、
1
2
C、1
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是給定的正實數(shù),若滿足丨x-a丨<b的一切實數(shù)x,使不等式丨x2-a2丨<
1
2
都成立,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案