20.f(x)=ax2+2(a-1)x+2在(-∞,4]上單調(diào)遞減,則a的取值范圍是( 。
A.$a≤\frac{1}{5}$B.$a≥\frac{1}{5}$C.$0<a≤\frac{1}{5}$D.$0≤a≤\frac{1}{5}$

分析 對(duì)函數(shù)求導(dǎo),函數(shù)在(-∞,2)上單調(diào)遞減,可知導(dǎo)數(shù)在(-∞,2)上導(dǎo)數(shù)值小于等于0,可求出a的取值范圍

解答 解:對(duì)函數(shù)求導(dǎo)y′=2ax+2(a-1),函數(shù)在(-∞,4]上單調(diào)遞減,
則導(dǎo)數(shù)在(-∞,4]上導(dǎo)數(shù)值小于等于0,
當(dāng)a=0時(shí),y′=-2,恒小于0,符合題意;
當(dāng)a≠0時(shí),因函導(dǎo)數(shù)是一次函數(shù),故只有a>0,且最小值為y′=2a×4+2(a-1)≤0,
解得:0<a≤$\frac{1}{5}$,
∴a∈[0,$\frac{1}{5}$],
解法二、當(dāng)a=0時(shí),f(x)=-2x+2遞減成立;
當(dāng)a>0時(shí),對(duì)稱軸為x=$\frac{1-a}{a}$,由題意可得:$\frac{1-a}{a}$≥4,解得0<a≤$\frac{1}{5}$,
當(dāng)a<0不成立.
∴a∈[0,$\frac{1}{5}$].
故選:D.

點(diǎn)評(píng) 本題主要二次函數(shù)的性質(zhì)、考查函數(shù)的導(dǎo)數(shù)求解和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某海輪以30公里/小里的速度航行,在A點(diǎn)測(cè)得海面上油井P在南偏東60°,向北航行40分鐘后到達(dá)B點(diǎn),測(cè)得油井P在南偏東30°,海輪改為北偏東60°的航向再行駛40分鐘到達(dá)C點(diǎn),求
①PC間的距離;
②在點(diǎn)C測(cè)得油井的方位角是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={1,2},B={x|x2=1},則A∪B={-1,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)化簡:($\frac{2{a}^{2}}$)${\;}^{3}÷(\frac{2^{2}}{3a})^{0}×(-\frac{a})^{-3}$;
(2)若a>0,b>0,化簡:$\frac{(2{a}^{\frac{2}{3}}^{\frac{1}{2}})•(-6{a}^{\frac{1}{2}}^{\frac{1}{3}})}{-3{a}^{\frac{1}{6}}^{\frac{5}{6}}}-(4a-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示,四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,P分別為其所在棱的中點(diǎn),能得到AB∥面MNP的圖形的序號(hào)是( 。
A.①②B.②④C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C的方程為x2+(y-4)2=4,點(diǎn)O是坐標(biāo)原點(diǎn),直線l:y=kx與圓C交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)求弦MN中點(diǎn)G的軌跡方程,并求出軌跡的長度;
(3)設(shè)Q(m,n)是線段MN上的點(diǎn),且$\frac{2}{{|OQ{|^2}}}=\frac{1}{{|OM{|^2}}}+\frac{1}{{|ON{|^2}}}$,請(qǐng)將n表示為m的函數(shù),并求其定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下面幾個(gè)命題中,假命題是( 。
A.“π是函數(shù)y=sinx的一個(gè)周期”或“2π是函數(shù)y=cosx的一個(gè)周期”
B.“x2+y2=0”是“xy=0”的必要不充分條件
C.“若a≤b,則2a≤2b-1”的否命題
D.“?a∈(0,+∞),函數(shù)y=ax在定義域內(nèi)單調(diào)遞增”的否定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)正實(shí)數(shù)x,y,z滿足x+3y+z=1,則$\frac{1}{4x+8y}+\frac{x+2y}{y+z}$的最小值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=x2-log2(2x+2).若0<b<1,則f(b)的值滿足( 。
A.f(b)>f(-$\frac{3}{4}$)B.f(b)>0C.f(b)>f(2)D.f(b)<f(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案