2.設(shè)遞增的等差數(shù)列{an}中,a3+a5=8,a2•a6=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+2}}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出;
(2)利用“裂項(xiàng)求和”即可得出.

解答 解:(1)設(shè)遞增的等差數(shù)列{an}的公差為d>0,∵a3+a5=8,a2•a6=12.
∴$\left\{\begin{array}{l}{2{a}_{1}+6d=8}\\{({a}_{1}+d)({a}_{1}+5d)=12}\end{array}\right.$,解得d=1=a1
∴an=1+(n-1)=n.
(2)bn=$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點(diǎn)P在函數(shù)y=$\frac{1}{x}$的圖象上,過點(diǎn)P的直線交x、y軸正半軸于點(diǎn)A、B,O為坐標(biāo)原點(diǎn),三角形△AOB的面積為S,若$\overrightarrow{BP}=λ\overrightarrow{PA}$且S∈[2,3],則λ的取值范圍是[2-$\sqrt{3}$,2$+\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.{an}為等比數(shù)列,求下列各值:
(1)a6-a4=24,a3a5=64,求an;
(2)已知a2•a8=36,a3+a7=15,求公比q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在(-$\frac{3}{2}$π,$\frac{3}{2}$π)范圍內(nèi),函數(shù)y=tanx-sinx的零點(diǎn)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)O,A,B,M為平面上四點(diǎn),$\overrightarrow{OM}$=$\frac{1}{3}$$\overrightarrow{OA}$$+\frac{2}{3}$$\overrightarrow{OB}$,則( 。
A.點(diǎn)B在線段AM上B.點(diǎn)M為線段BA的靠近B的三等分點(diǎn)
C.點(diǎn)M為線段BA的中點(diǎn)D.O,A,B,M四點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合M={x|0<x<2},N={x|x>1},則M∩N=( 。
A.[1,2)B.(1,2)C.[0,1)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,3),若m$\overrightarrow{a}$-n$\overrightarrow$與2$\overrightarrow{a}$+$\overrightarrow$共線,(其中m,n∈R,且n≠0),則$\frac{m}{n}$=( 。
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若{an}為等差數(shù)列,Sn是其前n項(xiàng)和,且S11=$\frac{22π}{3}$,{bn}為等比數(shù)列,b5•b7=$\frac{π^2}{4}$,則tan(a6+b6)的值為( 。
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$±\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若不等式ax2+bx+2>0的解集為$\left\{{x|-\frac{1}{4}<x<\frac{1}{3}}\right\}$,則a+b的值是(  )
A.-10B.-22C.-24D.22

查看答案和解析>>

同步練習(xí)冊答案