【題目】已知U=R且A={x|a2x2-5ax-6<0},B{x||x-2|≥1}.
(1)若a=1,求(UA)B;
(2)求不等式a2x2-5ax-6<0(a∈R)的解集.
【答案】(1){x|x≤-1或x≥6};(2)a=0時,不等式的解集為R;a>0時,不等式的解集為(-,);a<0時,不等式的解集為(,-).
【解析】
(1)解不等式求出集合,,再由集合運算法則計算.
(2)分類討論,,時,方程兩根為和,按它們的大小分類得解集.
(1)a=1時,A={x|x2-5x-6<0}={x|-1<x<6},B={x||x-2|≥1}={x|x≤1或x≥3};
∴UA={x|x≤-1或x≥6},
則(UA)B={x|x≤-1或x≥6};
(2)a=0時,不等式化為-6<0,解集為R;
當(dāng)a≠0時,不等式化為(ax+1)(ax-6)<0,即(x+)(x-)<0;
若a>0,則-<,不等式的解集為(-,);
若a<0,則->,不等式的解集為(,-);
綜上知,a=0時,不等式的解集為R;
a>0時,不等式的解集為(-,);
a<0時,不等式的解集為(,-).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的城市和交通擁堵嚴(yán)重的城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
(1)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大。ú灰笥嬎憔唧w值,給出結(jié)論即可);
(2)若得分不低于85分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)可”,請根據(jù)此樣本完成此列聯(lián)表,并據(jù)此樣本分析是否有的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);
合計 | |||
認(rèn)可 | |||
不認(rèn)可 | |||
合計 |
(3)若此樣本中的城市和城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來自城市的概率是多少?
(參考公式:)
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月,來自“一帶一路”沿線的20國青年評選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購.乘坐高鐵可以網(wǎng)絡(luò)購票,為了研究網(wǎng)絡(luò)購票人群的年齡分布情況,在5月31日重慶到成都高鐵9600名網(wǎng)絡(luò)購票的乘客中隨機抽取了120人進行了統(tǒng)計并記錄,按年齡段將數(shù)據(jù)分成6組:,得到如下直方圖:
(1)試通過直方圖,估計5月31日當(dāng)天網(wǎng)絡(luò)購票的9600名乘客年齡的中位數(shù);
(2)若在調(diào)查的且年齡在段乘客中隨機抽取兩人,求兩人均來自同一年齡段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心坐標(biāo)為,且該圓經(jīng)過點.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若點也在圓上,且弦長為8,求直線的方程;
(3)直線交圓于,兩點,若直線,的斜率之積為2,求證:直線過一個定點,并求出該定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥平面ABCD,點E、F分別是AB和PC的中點.
(1)求證:AB⊥平面PAD;
(2)求證:EF//平面PAD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com