6.在△ABC中,若a=3,c=4,cosC=-$\frac{1}{4}$,則b=$\frac{7}{2}$.

分析 利用余弦定理即可得出.

解答 解:由余弦定理可得:c2=a2+b2-2abcosC,
∴42=32+b2-2×3b×$\frac{1}{4}$,
化為:2b2-3b-14=0,
解得b=$\frac{7}{2}$.
故答案為:$\frac{7}{2}$.

點評 本題考查了余弦定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足:a1=1,an+1=$\frac{1}{2}$an+$\frac{n}{{2}^{n+1}}$${a}_{n}^{2}$(n∈N*).
(1)求最小的正實數(shù)M,使得對任意的n∈N*,恒有0<an≤M.
(2)求證:對任意的n∈N*,恒有$\frac{18}{5•{2}^{n}+8}$≤an≤${(\frac{3}{4})}^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的前n項和為Sn,a1=-7,S8=0.
(Ⅰ)求{an}的通項公式;
(Ⅱ)數(shù)列{bn}滿足b1=$\frac{1}{16}$,bnbn+1=2an,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 圖象上有且僅有四個不同的點關(guān)于直線y=e的對稱點在函數(shù)g(x)=kx+2e+1的圖象上,則實數(shù)k的取值范圍為(  )
A.(1,2)B.(-1,0)C.(-2,-1)D.(-6,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別是棱BB1、CC1的中點,AC與BD交于點O.
(1)求證:OE⊥平面ACD1
(2)求異面直線OE與BF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過點A(3,1)的直線l與圓C:x2+y2-4y-1=0相切于點B,則$\overrightarrow{CA}•\overrightarrow{CB}$=(  )
A.0B.$\sqrt{5}$C.5D.$\frac{{\sqrt{50}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,已知正方形ABCD所在平面垂直于矩形ACEF所在的平面,BD與AC的交點為O,M,P分別為AB,EF的中點,AB=2,AF=1.
(1)求證:平面PCD⊥平面PCM;
(2)求三棱錐O-PCM的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若復(fù)數(shù)$\frac{a-3i}{1-2i}$(a∈R,i為虛數(shù)單位)是純虛數(shù),則實數(shù)a的值為( 。
A.-2B.4C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知復(fù)數(shù)z1滿足z1(2+i)=5i(i為虛數(shù)單位),若復(fù)數(shù)z2滿足z1+z2是實數(shù),z1•z2是純虛數(shù),求復(fù)數(shù)z2

查看答案和解析>>

同步練習(xí)冊答案