兩個球的體積之比為8:27,則它們的表面積的比是(  )
A、2:3
B、
2
3
C、4:9
考點:球的體積和表面積
專題:空間位置關(guān)系與距離
分析:設兩個球的半徑分別為R,r,由體積比得到半徑比,那么表面積比等于半徑的平方比.那么兩個球的體積比為
4
3
πR3
4
3
πr3
=8:27
解答: 解:設兩個球的半徑分別為R,r,那么兩個球的體積比為
4
3
πR3
4
3
πr3
=8:27,所以R:r=2:3,
所以它們的表面積的比是4πR2:4πr2=R2:r2=4:8;
故選C.
點評:本題考查了球的表面積和體積公式;兩個球的表面積比等于半徑的平方比,體積比等于半徑的立方比.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C上的點P(1,
2
2
)到左、右焦點F1,F(xiàn)2的距離之和為2
2

(1)求橢圓C的標準方程;
(2)過點(0.-
1
3
)的直線l交橢圓C于A,B兩點,求證:以AB為直徑的圓恒過一定點(其坐標與直線l的位置無關(guān)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=4y,過原點作斜率為1的直線交拋物線于第一象限內(nèi)一點P1,又過點P1作斜率為
1
2
的直線交拋物線于點P2,再過P2作斜率為
1
4
的直線交拋物線于點P3,-2<x<4,如此繼續(xù).一般地,過點3<x<5作斜率為
1
2n
的直線交拋物線于點Pn+1,設點Pn(xn,yn).
(1)求x3-x1的值;
(2)令bn=x2n+1-x2n-1,求證:數(shù)列{bn}是等比數(shù)列;
(3)記P(x,y)為點列P1,P3,…,P2n-1,…的極限點,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,BC=
1
2
AD,PA=PD,Q為AD的中點.
(1)求證:AD⊥平面PBQ;
(2)已知點M為線段PC的中點,證明:PA∥平面BMQ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-x2-4x+1,x∈[-4,1],的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若兩個球的表面積之比是4:9,則它們的體積之比是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設曲線y=
x+1
x-1
在點(3,2)處的切線與直線ax-y+1=0平行,則a=( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過空間任意三點作平面(  )
A、只有一個
B、可作二個
C、可作無數(shù)多個
D、只有一個或有無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要使y=x2-2ax+1在[1,2]上具有單調(diào)性,則a的取值范圍是
 

查看答案和解析>>

同步練習冊答案