【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請(qǐng)全國(guó)人大常委會(huì)審議,草案對(duì)“生活垃圾污染環(huán)境的防治”進(jìn)行了專章規(guī)定.草案提出,國(guó)家推行生活垃圾分類制度.為了了解人民群眾對(duì)垃圾分類的認(rèn)識(shí),某市環(huán)保部門(mén)對(duì)該市市民進(jìn)行了一次垃圾分類網(wǎng)絡(luò)知識(shí)問(wèn)卷調(diào)查,每一位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:
得分 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;
(2)在(1)的條件下,市環(huán)保部門(mén)為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
①得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);
②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
獲贈(zèng)的隨機(jī)話費(fèi)(單位:元) | 20 | 40 |
概率 |
現(xiàn)市民小王要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.
附:①;
②若,則,,.
【答案】(1)0.8186;
(2)分布列見(jiàn)解析,.
【解析】
(1)先求出,再根據(jù)正態(tài)分布的知識(shí)求出即可;(2)先求出的所有可能情況20,40,60,80元,再求的分布列及數(shù)學(xué)期望即可.
(1)根據(jù)題中所給的統(tǒng)計(jì)表,結(jié)合題中所給的條件,可以求得
.
又,,
所以.
(2)根據(jù)題意,可以得出所得話費(fèi)的可能值有20,40,60,80元,
得20元的情況為低于平均值,概率,
得40元的情況有一次機(jī)會(huì)獲40元,2次機(jī)會(huì)2個(gè)20元,概率,
得60元的情況為兩次機(jī)會(huì),一次40元一次20元,概率,
得80元的其概況為兩次機(jī)會(huì),都是40元,概率為.
所以變量的分布列為:
20 | 40 | 60 | 80 | |
所以其期望為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線,圓,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,設(shè)的交點(diǎn)為A,B,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù)滿足且,當(dāng)時(shí),,關(guān)于的不等式在上有且只有200個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;
(I)求函數(shù)f(x)的極值;
(II)當(dāng)恒成立時(shí),求實(shí)數(shù)m的取值范圍(e為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列都是由實(shí)數(shù)組成的無(wú)窮數(shù)列.
(1)若都是等差數(shù)列,判斷數(shù)列是否是等差數(shù)列,說(shuō)明理由;
(2)若,且是等比數(shù)列,求的所有可能值;
(3)若都是等差數(shù)列,數(shù)列滿足,求證: 是等差數(shù)列的充要條件是: 中至少有一個(gè)是常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,若與的夾角為,則直線與圓的位置關(guān)系是( )
A.相交但不過(guò)圓心B.相交且過(guò)圓心C.相切D.相離
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為為橢圓上一動(dòng)點(diǎn),當(dāng)的面積最大時(shí),其內(nèi)切圓半徑為,設(shè)過(guò)點(diǎn)的直線被橢圓截得線段,
當(dāng)軸時(shí),.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為橢圓的左頂點(diǎn),是橢圓上異于左、右頂點(diǎn)的兩點(diǎn),設(shè)直線的斜率分別為,若,試問(wèn)直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知美國(guó)蘋(píng)果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬(wàn)美元,每生產(chǎn)1萬(wàn)部還需要另外投入16美元,設(shè)蘋(píng)果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)萬(wàn)部并全部銷售完,每萬(wàn)部的銷售收入為萬(wàn)元,且.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)部)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬(wàn)部時(shí),蘋(píng)果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com