1.將十進(jìn)制數(shù)100轉(zhuǎn)換成二進(jìn)制數(shù)所得結(jié)果為1100100(2)

分析 利用“除k取余法”是將十進(jìn)制數(shù)除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.

解答 解:100÷2=50…0,
50÷2=25…0,
25÷2=12…1,
12÷2=6…0,
6÷2=3…0,
3÷2=1…1,
1÷2=0…1,
故100(10)=1100100(2)
故答案為:1100100(2)

點(diǎn)評 本題考查的知識點(diǎn)是十進(jìn)制與其它進(jìn)制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點(diǎn)A(2,0),點(diǎn)B(2$\sqrt{3}$,0),直線l:(λ+3)x+(λ-1)y-4λ=0(其中λ∈R).
(Ⅰ)求直線l所經(jīng)過的定點(diǎn)P的坐標(biāo);
(Ⅱ)若分別過A,B且斜率為$\sqrt{3}$的兩條平行直線截直線l所得線段的長為4$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線Ω:x2=2py(p>0),過點(diǎn)(0,2p)的直線與拋物線Ω交于A、B兩點(diǎn),AB的中點(diǎn)為M,若點(diǎn)M到直線y=2x的最小距離為$\frac{\sqrt{5}}{5}$,則p=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2|x+1|-|x-1|
(Ⅰ)求函數(shù)f的圖象與直線y=1圍成的封閉圖形的面積m
(Ⅱ)在(Ⅰ)的條件下,若正數(shù)a、b滿足a+2b=abm,求a+2b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn),已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點(diǎn);
(2)對任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩個相異的不動點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,sin2B=sinAsinC.
(1)若$a=\sqrt{2}b$,求cosA;
(2)若B=60°,且$a=\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)數(shù)列{an}滿足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超過x的最大整數(shù),則$[\frac{2017}{{a}_{1}}+\frac{2017}{{a}_{2}}+…+\frac{2017}{{a}_{2017}}]$=( 。
A.2015B.2016C.2017D.2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)雙曲線${x^2}-\frac{y^2}{24}=1$的兩個焦點(diǎn)為F1,F(xiàn)2,P是雙曲線上的一點(diǎn),且|PF1|:|PF2|=3:4,則△PF1F2的面積等于( 。
A.18B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.立方體ABCD-A1B1C1D1中,棱長為3,P為BB1的中點(diǎn),則四棱錐P-AA1C1C的體積為27.

查看答案和解析>>

同步練習(xí)冊答案