分析 求出函數(shù)的導函數(shù),函數(shù)f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是單調(diào)函數(shù),所以f′(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]符號不變,分離變量后利用函數(shù)的單調(diào)性求實數(shù)a的范圍.
解答 解:由f(x)=4x3-ax+3,所以f′(x)=12x2-a,
因為函數(shù)f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是單調(diào)函數(shù),
所以以f′(x)=12x2-a在[-$\frac{1}{2}$,$\frac{1}{2}$]上符號不變,可得-a≥0或12×$(\frac{1}{2})^{2}-a≤0$恒成立.
解得a≤0或a≥3.
故答案為:a≤0或a≥3.
點評 本題考查了函數(shù)的單調(diào)性與函數(shù)的導函數(shù)的關(guān)系,二次函數(shù)的簡單性質(zhì)的應用,考查了利用函數(shù)的單調(diào)性求函數(shù)的最值,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (π,$\frac{9π}{8}$) | B. | [π,$\frac{9π}{8}$] | C. | [$\frac{7π}{6}$,$\frac{4π}{3}$] | D. | ($\frac{7π}{6}$,$\frac{4π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com