12.已知三棱錐S-ABC中△SAB與△ABC均為等邊三角形,M、N分別為AC、SB的中點(diǎn),經(jīng)過(guò)M、N且與AB平行的平面α與BC交于點(diǎn)D.
(1)求證:SC∥面MND;
(2)證明:SC⊥MD.

分析 (1)由條件利用直線和平面平行的性質(zhì)可得AB∥MD,D為BC的中點(diǎn),可得SC∥ND,再利用直線和平面平行的判定定理證得SC∥面MND.
(2)取AB的中點(diǎn)為O,根據(jù)AB⊥SO,AB⊥CO,證明AB⊥平面SOC,可得AB⊥SC,從而證得MD⊥SC.

解答 (1)證明:∵M(jìn)、N分別為AC、SB的中點(diǎn),經(jīng)過(guò)M、N且與AB平行的平面α與BC交于點(diǎn)D,
故AB∥MD,∴D為BC的中點(diǎn),故NC為△SBC的中位線,∴SC∥ND.
而ND?面MND,∴SC∥面MND.
(2)證明:取AB的中點(diǎn)為O,則由△SAB與△ABC均為等邊三角形,可得AB⊥SO,AB⊥CO.
而SO∩CO=O,∴AB⊥平面SOC,∴AB⊥SC,∴MD⊥SC.

點(diǎn)評(píng) 本題主要考查直線和平面平行的性質(zhì)定理和判定定理,直線和平面垂直判定定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知點(diǎn)A、B的坐標(biāo)分別為(-2,0)、(2,0),直線AT、BT交于點(diǎn)T,且它們的斜率之積為常數(shù)-λ(λ>0,λ≠1),點(diǎn)T的軌跡以及A、B兩點(diǎn)構(gòu)成曲線C.
(Ⅰ)求曲線C的方程,并求其焦點(diǎn)坐標(biāo);
(Ⅱ)若0<λ<1,且曲線C上的點(diǎn)到其焦點(diǎn)的最小距離為1.設(shè)直線l:x=my+1交曲線C于M、N,直線AM、BN交于點(diǎn)P.
(ⅰ)當(dāng)m=0時(shí),求點(diǎn)P的坐標(biāo);
(ⅱ)當(dāng)m變化時(shí),是否存在直線l1,使P總在直線l1上?若存在,求出l1的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,已知正六邊形ABCDEF的邊長(zhǎng)為2,O為它的中心,將它沿對(duì)角線FC折疊,使平面ABCF⊥平面FCDE,點(diǎn)G是邊AB的中點(diǎn).

(Ⅰ)證明:DC∥平面EGO;
(Ⅱ)證明:平面BFD⊥平面EGO;
(Ⅲ)求多面體EFGBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是a≤0或a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.用信息技術(shù)工具畫(huà)出直線l:2x-y+3=0,并在平面上取若干點(diǎn),度量它們的坐標(biāo),將這些點(diǎn)的坐標(biāo)代入2x-y+3,求它的值,觀察有什么規(guī)律.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{x+\frac{1}{x}-3,x>0}\end{array}\right.$,若關(guān)于x的方程f(x2+2x+$\frac{1}{2}$)=m有4個(gè)不同的實(shí)數(shù)根,則m的取值范圍是(0,+∞)∪(-1,-$\frac{1}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)($\frac{3}{2}$,1)一個(gè)焦點(diǎn)是F(0,1).
(1)求橢圓C的方程;
(2)設(shè)橢圓C與y軸的兩個(gè)交點(diǎn)為A1、A2,點(diǎn)P在直線y=a2上,直線PA1、PA2分別與橢圓C交于點(diǎn)M、N兩點(diǎn),試問(wèn):當(dāng)點(diǎn)P在直線y=a2上運(yùn)動(dòng)時(shí),直線MN是否恒經(jīng)過(guò)定點(diǎn)Q?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,過(guò)橢圓右焦點(diǎn)F且斜率為I的直線l截橢圓所得弦長(zhǎng)為$\frac{24}{7}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A、B為橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),作不平行于坐標(biāo)軸且不經(jīng)過(guò)右焦點(diǎn)F的割線PQ,若滿(mǎn)足∠AFP=∠BFQ,求證:割線PQ恒經(jīng)過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四邊形ABCD為梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,DC=2AB=2a,DA=$\sqrt{3}a$,E為BC中點(diǎn).
(1)求證:平面PBC⊥平面PDE;
(2)線段PC上是否存在一點(diǎn)F,使PA∥平面BDF?若有,請(qǐng)找出具體位置,并進(jìn)行證明;若無(wú),請(qǐng)分析說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案