【題目】已知函數(shù) .
(1)若曲線在處切線的斜率為,求此切線方程;
(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.
【答案】(1);(2),證明見解析.
【解析】分析:(1)由函數(shù)的解析式可得,利用可得, 則切點(diǎn)為,切線方程為.
(2)結(jié)合(1)中導(dǎo)函數(shù)的解析令,得.構(gòu)造函數(shù),令,則,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性可知在遞增,在遞減,所以. 結(jié)合題意可得的取值范圍是. 由極值點(diǎn)的性質(zhì)可得不妨設(shè),則,,結(jié)合的單調(diào)性可得,據(jù)此有,即.
詳解:(1)∵,∴,解得,
∴,故切點(diǎn)為,
所以曲線在處的切線方程為.
(2),令,得.
令,則,
且當(dāng)時(shí),;當(dāng)時(shí),;時(shí),.
令,得,
且當(dāng)時(shí),;當(dāng)時(shí),.
故在遞增,在遞減,所以.
所以當(dāng)時(shí),有一個(gè)極值點(diǎn);
時(shí),有兩個(gè)極值點(diǎn);
當(dāng)時(shí),沒有極值點(diǎn).
綜上,的取值范圍是.
因?yàn)?/span>是的兩個(gè)極值點(diǎn),所以即…①
不妨設(shè),則,,
因?yàn)?/span>在遞減,且,所以,即…②.
由①可得,即,
由①,②得,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全世界越來越關(guān)注環(huán)境保護(hù)問題,某監(jiān)測(cè)站點(diǎn)于2018年1月某日起連續(xù)天監(jiān)測(cè)空氣質(zhì)量指數(shù)(),數(shù)據(jù)統(tǒng)計(jì)如下:
空氣質(zhì)量指數(shù)() | |||||
空氣質(zhì)量等級(jí) | 空氣優(yōu) | 空氣良 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) | 20 | 40 | 10 | 5 |
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出,的值,并完成頻率分布直方圖;
(2)由頻率分布直方圖,求該組數(shù)據(jù)的眾數(shù)和中位數(shù);
(3)在空氣質(zhì)量指數(shù)分別屬于和的監(jiān)測(cè)數(shù)據(jù)中,用分層抽樣的方法抽取天,再?gòu)闹腥我膺x取天,求事件“兩天空氣都為良”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
煉鋼是一個(gè)氧化降碳的過程,由于鋼水含碳量的多少直接影響冶煉時(shí)間的長(zhǎng)短,因此必須掌握鋼水含碳量和冶煉時(shí)間的關(guān)系.現(xiàn)已測(cè)得爐料熔化完畢時(shí)鋼水的含碳量x與冶煉時(shí)間y(從爐料熔化完畢到出鋼的時(shí)間)的一組數(shù)據(jù),如下表所示:
(1)據(jù)統(tǒng)計(jì)表明,之間具有線性相關(guān)關(guān)系,請(qǐng)用相關(guān)系數(shù)r加以說明( ,則認(rèn)為y與x有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒有較強(qiáng)的線性相關(guān)關(guān)系,r精確到0.001);
(2)建立y關(guān)于x的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);
(3)根據(jù)(2)中的結(jié)論,預(yù)測(cè)鋼水含碳量為160個(gè)0.01%的冶煉時(shí)間.
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,
,相關(guān)系數(shù)
參考數(shù)據(jù):,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若,使()成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)分別是圓心在原點(diǎn),半徑為和的圓上的動(dòng)點(diǎn).動(dòng)點(diǎn)從初始位置開始,按逆時(shí)針方向以角速度作圓周運(yùn)動(dòng),同時(shí)點(diǎn)從初始位置開始,按順時(shí)針方向以角速度作圓周運(yùn)動(dòng).記時(shí)刻,點(diǎn)的縱坐標(biāo)分別為.
(Ⅰ)求時(shí)刻,兩點(diǎn)間的距離;
(Ⅱ)求關(guān)于時(shí)間的函數(shù)關(guān)系式,并求當(dāng)時(shí),這個(gè)函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A. (-∞,0) B. C. (0,1) D. (0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實(shí)數(shù)m取什么值時(shí),復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn).
(1)位于第四象限?
(2)位于第一、三象限?
(3)位于直線y=x上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為紀(jì)念重慶黑山谷晉升國(guó)家5A級(jí)景區(qū)五周年,特發(fā)行黑山谷紀(jì)念郵票,從2017年11月1日起開始上市.通過市場(chǎng)調(diào)查,得到該紀(jì)念郵票在一周內(nèi)每1張的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:
上市時(shí)間x天 | 1 | 2 | 6 |
市場(chǎng)價(jià)y元 | 5 | 2 | 10 |
(Ⅰ)分析上表數(shù)據(jù),說明黑山谷紀(jì)念郵票的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的變化關(guān)系,并判斷y與x滿足下列哪種函數(shù)關(guān)系,①一次函數(shù);②二次函數(shù);③對(duì)數(shù)函數(shù),并求出函數(shù)的解析式;
(Ⅱ)利用你選取的函數(shù),求黑山谷紀(jì)念郵票市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對(duì)該市市民進(jìn)行了一次垃圾分類知識(shí)的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請(qǐng)完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?
(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.
①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;
②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com