化簡(jiǎn):(acosθ+bsinθ)2+(asinθ-bcosθ)2
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:直接利用平方關(guān)系化簡(jiǎn)求解即可.
解答: 解:(acosθ+bsinθ)2+(asinθ-bcosθ)2
=a2cos2θ+2abcosθsinθ+b2sin2θ+a2sin2θ-2abcosθsinθ+b2cos2θ
=a2+b2
點(diǎn)評(píng):本題考查同角三角函數(shù)的基本關(guān)系式的應(yīng)用,三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,
1-x
x
),
b
=(x-1,1),則使得|
a
+
b
|取最小值的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是A、B、C的對(duì)邊,且滿足
cosB
cosC
=-
b
2
a+c

(1)求角B的值;
(2)若a=1,c=2
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
2
3x+1
(x∈R),其中a∈R.
(Ⅰ)是否存在實(shí)數(shù)a,使f(x)為奇函數(shù)?若存在求出a的值,若不存在說(shuō)明理由;
(Ⅱ)判斷并證明f(x)的單調(diào)性;
(Ⅲ)若對(duì)任意實(shí)數(shù)x∈(0,1),由f(λx+1)>f(λ2+x)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2-x(x∈R),
(1)求證:函數(shù)f(x)是R上的增函數(shù);
(2)若x滿足條件2 x2≤(
1
2
x-2,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四邊形ABCD的四個(gè)頂點(diǎn)是A(2,3),B(1,-1),C(-1,-2),D(-2,2),求四邊形ABCD的四邊形所在直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x
;
(1)求函數(shù)f(x)的定義域A;
(2)計(jì)算f(m)+f(-m)(m∈A)的值,由此你發(fā)現(xiàn)了該函數(shù)的什么性質(zhì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-2,0),B(2,0),P是圓C:(x+3)2+(y-4)2=9上一動(dòng)點(diǎn).
(1)求△PAB的重心G的軌跡;
(2)求|PA|2+|PB|2的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求橢圓mx2+ny2+mn=0(m<n<0)的焦點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案