16.函數(shù)f(x)=exlnx在點(1,f(1))處的切線方程是y=ex-e.

分析 求出f(x)的導數(shù),可得切線的斜率和切點,運用點斜式方程可得切線的方程.

解答 解:函數(shù)f(x)=exlnx的導數(shù)為f′(x)=ex(lnx+$\frac{1}{x}$),
可得f(x)在點(1,f(1))處的切線斜率為e(ln1+1)=e,
切點為(1,0),
即有f(x)在點(1,f(1))處的切線方程為y-0=e(x-1),
即為y=ex-e.
故答案為:y=ex-e.

點評 本題考查導數(shù)的運用:求切線方程,考查導數(shù)的幾何意義,正確求導和運用直線方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知F1,F(xiàn)2分別是橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點,P是橢圓E上的點,且PF2⊥x軸,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=\frac{1}{16}{a^2}$.直線l經(jīng)過F1,與橢圓E交于A,B兩點,F(xiàn)2與A,B兩點構(gòu)成△ABF2
(1)求橢圓E的離心率;
(2)設(shè)△F1PF2的周長為$2+\sqrt{3}$,求△ABF2的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{x},x≥1\\{x^3},x<1\end{array}$,若關(guān)于x的方程f(x)=x+m有兩個不同的實根,則實數(shù)所的取值范圍為0<m<$\frac{2\sqrt{3}}{9}$或m<-$\frac{2\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設(shè)a1,a2,a3均為正數(shù),且a1+a2+a3=1,求$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知點A(2,0),點B(-2,0),直線l:(λ+3)x+(λ-1)y-4λ=0(其中λ∈R),若直線l與線段AB有公共點,則λ的取值范圍是( 。
A.[-1,3)B.(-1,1)∪(1,3)C.[-1,1)∪(1,3]D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.且$\overrightarrow m$=(cos(A-B),-sin(A-B)),$\overrightarrow n$=(cosB,sinB),若$\overrightarrow m$•$\overrightarrow n$=-$\frac{3}{5}$.
(Ⅰ)求sin A的值;
(Ⅱ)若a=4$\sqrt{2}$,b=5,求向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.要完成下列兩項調(diào)查:
(1)某社區(qū)有100戶高收入家庭,210戶中等收入家庭,90戶低收入家庭,從中抽取100戶調(diào)查消費購買力的某項指標;
(2)從某中學高二年級的10名體育特長生中抽取3人調(diào)查學習負擔情況.
應(yīng)采取的抽樣方法是( 。
A.(1)用系統(tǒng)抽樣法,(2)用簡單隨機抽樣法
B.(1)用分層抽樣法,(2)用系統(tǒng)抽樣法
C.(1)用分層抽樣法,(2)用簡單隨機抽樣法
D.(1)(2)都用分層抽樣法

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.關(guān)于x的方程x2+4x+m=0的兩根為x1,x2滿足|x1-x2|=2,則實數(shù)m的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)命題p:-6≤m≤6,命題函數(shù)q:f(x)=x2+mx+9(m∈R)沒有零點,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案