精英家教網 > 高中數學 > 題目詳情

【題目】某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數列.
(1)求圖中實數a的值;
(2)若該校高一年級共有學生640人,試估計該校高一年級期中考試數學成績不低于80分的人數;
(3)若從樣本中數學成績在[40,50)與[90,100]兩個分數段內的學生中隨機選取兩名學生,記這兩名學生成績在[90,100]內的人數為X,求隨機變量X的分布列和期望值.

【答案】
(1)解:∵頻率分布直方圖前三段的頻率成等比數列,

∴由頻率分布直方圖,得:(10b)2=0.05×0.20,解得b=0.010,

∴a=0.1﹣0.005﹣0.010﹣0.020﹣0.025﹣0.010=0.030.


(2)解:成績不低于80分的人數估計為:640×(0.025+0.010)×10=224.
(3)解:樣本中成績在[40,50)內的人數為40×0.005×10=2,

成績在[90,100]內的人數為40×0.010×10=4,

X的所有可能取值為0,1,2,

P(X=0)= = ,

P(X=1)= = ,

P(X=2)= = ,

∴X的分布列為:

X

0

1

2

P

∴E(X)= =


【解析】(1)由等比數列性質及頻率分布直方圖,列出方程,能求出a.(2)利用頻率分布直方圖能求出成績不低于80分的人數.(3)樣本中成績在[40,50)內的人數為2,成績在[90,100]內的人數為4,X的所有可能取值為0,1,2,分別求出相應的概率,由此能求出X的分布列和E(X).
【考點精析】關于本題考查的離散型隨機變量及其分布列,需要了解在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,在長方體中,的中點,連接.

(1)求證:平面平面;

(2)求二面角的正切值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,其左、右焦點分別為,點是坐標平面內一點,且, 為坐標原點).

(1)求橢圓的方程;

(2)過點且斜率為的動直線交橢圓于兩點,在軸上是否存在定點,使以為直徑的圓恒過該點?若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】神舟五號飛船成功完成了第一次載人航天飛行,實現了中國人民的航天夢想,某段時間飛船在太空中運行的軌道是一個橢圓,地球在橢圓的一個焦點上,如圖所示,假設航天員到地球最近距離為d1 , 到地球最遠距離為d2 , 地球的半徑為R,我們想象存在一個鏡像地球,其中心在神舟飛船運行軌道的另外一個焦點上,上面住著一個神仙發(fā)射某種神秘信號需要飛行中的航天員中轉后地球人才能接收到,則神秘信號傳導的最短距離為(
A.d1+d2+R
B.d2﹣d1+2R
C.d2+d1﹣2R
D.d1+d2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于點(3,0). (Ⅰ)求函數f(x)的解析式;
(Ⅱ)若g(x)+f(x)=﹣6x2+(3c+9)x,命題p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1為假命題,求實數c的取值范圍;
(Ⅲ)若h(x)+f(x)=x3﹣7x2+9x+clnx(c是與x無關的負數),判斷函數h(x)有幾個不同的零點,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|3x﹣1|﹣2|x|+2.
(1)解不等式:f(x)<10;
(2)若對任意的實數x,f(x)﹣|x|≤a恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,△ABC的面積為S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,則cosA=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=x2﹣ax(a>0,且a≠1),g(x)=f′(x)(其中f′(x)為f(x)的導函數).
(1)當a=e時,求g(x)的極大值點;
(2)討論f(x)的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉過程中,下列說法錯誤的是(
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值

查看答案和解析>>

同步練習冊答案