用“輾轉(zhuǎn)相除法”可求得21672,8127的最大公約數(shù)是
 

用“更相減損術(shù)”可求得459與357的最大公約數(shù)是
 
;
用秦九韶算法計(jì)算多項(xiàng)式f(x)=12+35x-8x2+9x3+6x4+5x5+3x6在x=-4時(shí)的值時(shí),v3的值為
 
;
十進(jìn)制數(shù)100轉(zhuǎn)換成二進(jìn)制數(shù)為
 

將八進(jìn)制數(shù)5027(8)化成十進(jìn)制數(shù)為
 
考點(diǎn):用輾轉(zhuǎn)相除計(jì)算最大公約數(shù)
專題:算法和程序框圖
分析:利用“輾轉(zhuǎn)相除法”、“更相減損術(shù)”、“秦九韶算法”、不同數(shù)位進(jìn)制之間的轉(zhuǎn)化方法即可得出.
解答: 解:①用“輾轉(zhuǎn)相除法”:21672=8127×2+5418,8127=5418×1+2709,5418=2709×2,
可求得21672,8127的最大公約數(shù)是2709;
②用“更相減損術(shù)”可得:459-357=102,357-102=255,255-102=153,153-102=51,102-51=51,
∴459與357的最大公約數(shù)是51;
③用秦九韶算法計(jì)算多項(xiàng)式f(x)=12+35x-8x2+9x3+6x4+5x5+3x6
=(((((3x+5)x+6)x+9)x-8)x+35)x+12,
x=-4時(shí),v0=3,v1=3×(-4)+5=-7,v2=(-7)×(-4)+6=34,v3=34×(-4)+9
=-127.
∴v3的值為-127;
④十進(jìn)制數(shù)100轉(zhuǎn)換成二進(jìn)制數(shù):利用“除2取余法”可得:100(10)=1100100(2)
⑤將八進(jìn)制數(shù)5027(8)化成十進(jìn)制數(shù)=5×83+0+2×81+7×80=2583.
故答案分別為:2709,51,-127,1100100(2),2583.
點(diǎn)評(píng):本題考查了“輾轉(zhuǎn)相除法”、“更相減損術(shù)”、“秦九韶算法”、不同數(shù)位進(jìn)制之間的轉(zhuǎn)化方法,考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)log2
7
48
+log212-
1
2
log242-1
(2)0.027 -
1
3
-(-
1
6
-2+2560.75+(
1
3
-1
0-3-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,試求a,b的值,
(1)并求出f(x)的單調(diào)區(qū)間.
(2)在區(qū)間[-2,2]上的最大值與最小值
(3)若關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把“五進(jìn)制”數(shù)1234(5)轉(zhuǎn)化為“八進(jìn)制”數(shù)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1,(x≥3)
1-3x,(x<3)
,則f(f(-1))的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)命題
①函數(shù)f(x)=sin|x|是周期為π的偶函數(shù);
②A=Q,B=Q,f:x→
1
x
,這是一個(gè)從集合A到集合B的映射;
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域?yàn)閇-3,1];
④若△ABC為銳角三角形,則點(diǎn)P(sinA-cosB,cosC-sinB)必在第四象限;
⑤一條曲線y=|3-x2|和直線y=a(a∈R)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
其中你認(rèn)為正確的全部有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
1
2
|x|在閉區(qū)間[-2,1]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(a,b)是直線y=-x上的點(diǎn),若對(duì)曲線y=
1
x
(x>0)上的任意一點(diǎn)Q恒有|PQ|≥3,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

21.已知函數(shù)f(x)=px-
p
x
-2lnx,g(x)=
2e
x
,
(1)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(3)若p2-p≥0,且至少存在一點(diǎn)x0∈[1,e]使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案