【題目】已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對(duì)稱(chēng)軸.過(guò)點(diǎn)A(-4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=________.
【答案】6
【解析】
求出圓的標(biāo)準(zhǔn)方程可得圓心和半徑,由直線l:x+ay﹣1=0經(jīng)過(guò)圓C的圓心(2,1),求得a的值,可得點(diǎn)A的坐標(biāo),再利用直線和圓相切的性質(zhì)求得|AB|的值.
∵圓C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,
表示以C(2,1)為圓心、半徑等于2的圓.
由題意可得,直線l:x+ay﹣1=0經(jīng)過(guò)圓C的圓心(2,1),
故有2+a﹣1=0,∴a=﹣1,點(diǎn)A(﹣4,﹣1).
∵AC2,CB=R=2,
∴切線的長(zhǎng)|AB|6.
故答案為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最大值;
(2)若只有一個(gè)極值點(diǎn).
(i)求實(shí)數(shù)的取值范圍;
(ii)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某購(gòu)物商場(chǎng)分別推出支付寶和微信“掃碼支付”購(gòu)物活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用“掃碼支付”.現(xiàn)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程適合用來(lái)表示,求出該回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用掃碼支付的人次;
(2)推廣期結(jié)束后,商場(chǎng)對(duì)顧客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
支付方式 | 現(xiàn)金 | 會(huì)員卡 | 掃碼 |
比例 |
商場(chǎng)規(guī)定:使用現(xiàn)金支付的顧客無(wú)優(yōu)惠,使用會(huì)員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購(gòu)買(mǎi)了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來(lái)估計(jì)相應(yīng)事件發(fā)生的概率,估計(jì)該顧客支付的平均費(fèi)用是多少?
參考數(shù)據(jù):設(shè),,,
參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)不經(jīng)過(guò)點(diǎn)的直線l與曲線C相交于A,B兩點(diǎn),直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:
①“若,則”的逆否命題為真命題
②“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
③若為假命題,則,均為假命題
④對(duì)于命題:,,則為:,
其中真命題的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,且所在直線的斜率之積等于,記頂點(diǎn)的軌跡為.
(Ⅰ)求頂點(diǎn)的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),點(diǎn)在曲線上,且為的重心(為坐標(biāo)原點(diǎn)),求證:的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績(jī)中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績(jī),按成績(jī)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)(保留到0.01);
(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績(jī)90分以上(含90分)為“優(yōu)秀”等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到“優(yōu)秀”等次的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】3個(gè)紅球與3個(gè)黑球隨機(jī)排成一行,從左到右依次在球上標(biāo)記1,2,3,4,5,6,則紅球上的數(shù)字之和小于黑球上的數(shù)字之和的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù))
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當(dāng)時(shí),若直線與曲線沒(méi)有公共點(diǎn),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com