分析 由已知中函數(shù)f(x)=(x-1)(x-2)(x-a),求出原函數(shù)的導(dǎo)函數(shù)f′(x),進而計算出f′(1),f′(2),f′(a),代入計算可得答案.
解答 解:∵函數(shù)f(x)=(x-1)(x-2)(x-a),
∴f′(x)=(x-1)(x-2)+(x-1)(x-a)+(x-2)(x-a),
∴f′(1)=a-1,f′(2)=2-a,f′(a)=(a-1)(a-2),
∴$\frac{1}{f′(1)}$+$\frac{4}{f′(2)}$+$\frac{{a}^{2}}{f′(a)}$=$\frac{1}{a-1}$+$\frac{-4}{a-2}$+$\frac{{a}^{2}}{(a-1)(a-2)}$=$\frac{{a}^{2}+(a-2)-4(a-1)}{(a-1)(a-2)}$=$\frac{{a}^{2}-3a+2}{(a-1)(a-2)}$=1,
故答案為:1
點評 本題考查的知識點是導(dǎo)數(shù)的運算,熟練掌握導(dǎo)數(shù)的運算公式及運算法則,是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{3}$π | B. | $\frac{4\sqrt{2}}{3}$π | C. | $\frac{8\sqrt{2}}{3}$π | D. | $\frac{10\sqrt{2}}{3}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{16}{3}$ | C. | 6 | D. | $\frac{20}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com