【題目】已知,兩點,滿足:,,,則的最大值為________.
【答案】
【解析】
設(shè)A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圓的方程和向量數(shù)量積的定義、坐標(biāo)表示,可得三角形OAB為等邊三角形,AB=1,的幾何意義為點A,B兩點到直線x+y﹣1=0的距離d1與d2之和,由兩平行線的距離可得所求最大值.
解:設(shè)A(x1,y1),B(x2,y2),
=(x1,y1),=(x2,y2),
由x12+y12=1,x22+y22=1,x1x2+y1y2=,
可得A,B兩點在圓x2+y2=1上,
且=1×1×cos∠AOB=,
即有∠AOB=60°,
即三角形OAB為等邊三角形,AB=1,
的幾何意義為點A,B兩點
到直線x+y﹣1=0的距離d1與d2之和,
顯然A,B在第三象限,AB所在直線與直線x+y=1平行,
可設(shè)AB:x+y+t=0,(t>0),
由圓心O到直線AB的距離d=,
可得2=1,解得t=,
即有兩平行線的距離為=,
即的最大值為,
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)滿足,的虛部為2,
(1)求復(fù)數(shù);
(2)設(shè)在復(fù)平面上對應(yīng)點分別為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,已知A=,B=,AB=6.在AB邊上取點E,使得BE=1,連接EC,ED.若∠CED=,EC=.
(1)求sin∠BCE的值;
(2)求CD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,x R其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個零點,求a的取值范圍;
(Ⅲ)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記 ,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
(1)根據(jù)箱產(chǎn)量的頻率分布直方圖填寫下面列聯(lián)表,從等高條形圖中判斷箱產(chǎn)量是否與新、舊網(wǎng)箱養(yǎng)殖方法有關(guān);
(2)根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān)?
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
參考公式:
(1)給定臨界值表
P(K) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)其中為樣本容量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標(biāo)原點且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點且均不與點重合,設(shè)直線與軸所成的銳角為,直線與軸所成的銳角為,判斷與的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)其中
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個零點,
(i)求的取值范圍;
(ii)設(shè)的兩個零點分別為x1,x2,證明:x1x2>e2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com