13.已知函數(shù)f(x)=ax3+x2(a∈R)在x=$-\frac{4}{3}$處取得極值,則a的值為$\frac{1}{2}$.

分析 求出函數(shù)的導(dǎo)數(shù),得到f′(-$\frac{4}{3}$)=0,解出檢驗(yàn)即可.

解答 解:∵f(x)=ax3+x2,
∴f′(x)=3ax2+2x,
∵f(x)在x=$-\frac{4}{3}$處取得極值,
∴f′(-$\frac{4}{3}$)=3•a•(-$\frac{4}{3}$)2+2•(-$\frac{4}{3}$)=0,
解得:a=$\frac{1}{2}$,經(jīng)檢驗(yàn)符合題意,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用,考查函數(shù)的極值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={(x,y)||x|<2,x+y<3,x∈Z,y∈N+},B={0,1,2},從A到B的對(duì)應(yīng)法則f:(x,y)→x+y,試作出對(duì)應(yīng)圖,并判斷對(duì)應(yīng)法則f是否從A到B的映射.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=-1時(shí),令g(x)=x3+x-f(x),求證:ln($\frac{n+1}{n}$)>$\frac{n-1}{{n}^{3}}$(n∈N*)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=x3+bx2+cx+d(b、a、d為常數(shù))的極大值為f(x1)、極小值為f(x2),且x1∈(0,1),x2∈(1,2),則${({b+\frac{1}{2}})^2}+{({c-3})^2}$的取值范圍是( 。
A.$({\sqrt{5},\frac{{\sqrt{61}}}{2}})$B.$({\sqrt{5},5})$C.$({5,\frac{61}{4}})$D.(5,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=ex-ax存在大于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ex-2x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)證明:當(dāng)x>0時(shí),x2<ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.f(x)=$\frac{{{x^2}-a}}{x+1}$的一個(gè)極值點(diǎn)為x=1,則a=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.P是曲線x2-y-lnx=0上的任意一點(diǎn),則點(diǎn)P到直線y=x-3的最小距離為(  )
A.1B.$\frac{{3\sqrt{2}}}{2}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=x2(0≤x≤1),記H(a,b)為函數(shù)f(x)圖象上點(diǎn)到直線y=ax+b距離的最大值,則H(a,b)的最小值是$\frac{\sqrt{2}}{16}$.

查看答案和解析>>

同步練習(xí)冊答案