分析 求出函數(shù)的導(dǎo)數(shù),得到f′(-$\frac{4}{3}$)=0,解出檢驗(yàn)即可.
解答 解:∵f(x)=ax3+x2,
∴f′(x)=3ax2+2x,
∵f(x)在x=$-\frac{4}{3}$處取得極值,
∴f′(-$\frac{4}{3}$)=3•a•(-$\frac{4}{3}$)2+2•(-$\frac{4}{3}$)=0,
解得:a=$\frac{1}{2}$,經(jīng)檢驗(yàn)符合題意,
故答案為:$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用,考查函數(shù)的極值問題,是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\sqrt{5},\frac{{\sqrt{61}}}{2}})$ | B. | $({\sqrt{5},5})$ | C. | $({5,\frac{61}{4}})$ | D. | (5,25) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com