11.在區(qū)間[0,5]上隨機地取一個數(shù)x,則“x≤1”的概率為$\frac{1}{5}$.

分析 在區(qū)間[0,5]上隨機地取一個數(shù)x,則“x≤1”的范圍是[0,1],利用幾何概型的公式得到所求.

解答 解:在區(qū)間[0,5]上隨機地取一個數(shù)x,則“x≤1”的范圍為[0,1],
由幾何概型的公式得到所求概率為$\frac{1-0}{5-0}=\frac{1}{5}$;
故答案為:$\frac{1}{5}$

點評 本題考查了幾何概型概率的求法;關(guān)鍵是明確幾何測度,利用測度比求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)等差數(shù)列{an}的前n項和為Sn,則Sn,S2n-Sn,S3n-S2n成等差數(shù)列,類比以上結(jié)論,設(shè)等比數(shù)列{bn}的前
n項積為Tn,則( 。
A.Tn,T2n,T3n成等比數(shù)列B.Tn,T2n-Tn,T3n-T2n成等差數(shù)列
C.Tn,$\frac{{T}_{2n}}{{T}_{n}}$,$\frac{{T}_{3n}}{{T}_{2n}}$成等比數(shù)列D.Tn,T2n-Tn,T3n-T2n成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}滿足a1=3,a2=7,且an+2總等于anan+1的個位數(shù)字,則 a2017的值為(  )
A.1B.3C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了落實中央提出的精準扶貧政策,某市人力資源和社會保障局派3人到仙水縣大馬鎮(zhèn)西坡村包扶5戶貧困戶,要求每戶都有且只有1人包扶,每人至少包扶1戶,則不同的包扶方案種數(shù)為( 。
A.30B.90C.150D.210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=lg(x2+1),g(x)=($\frac{1}{2}$)x-m,若對任意x1∈[0,3],存在x2∈[1,2],使得f(x1)≤g(x2),則實數(shù)m的取值范圍是(-∞,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖是“平面向量的數(shù)量積”的知識結(jié)構(gòu)圖,若要加入“投影”,則應(yīng)該是在幾何意義的下位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+cos2x+$\frac{3}{2}$.
(1)當x∈[-$\frac{π}{6}$,$\frac{π}{3}$]時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)已知ω>0,函數(shù)g(x)=f($\frac{ωx}{2}$+$\frac{π}{12}$),若函數(shù)g(x)在區(qū)間[-$\frac{2π}{3}$,$\frac{π}{6}$]上是增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某單位1~4月份用水量(單位:百噸)的一組數(shù)據(jù)如表所示:
月份x1234
用水量y4.5432.5
根據(jù)收集到的數(shù)據(jù),由最小二乘法可求得線性回歸方程$\widehat{y}$=$\widehat$x+5.25,則$\widehat$=(  )
A.-0.7B.0.7C.-0.75D.0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.《張丘建算經(jīng)》卷上第23題:今有女善織,日益功疾,初日織五尺,今一月日織十匹五丈,問日益幾何?意思是:現(xiàn)有一女子善于織布,若第1天織5尺布,從第2天起,每天比前一天多織相同量的布,現(xiàn)在一月(按30天計)共織450尺布(注:按古代1匹=4丈,1丈=10尺計算),則每天比前一天多織( 。
A.$\frac{16}{31}$尺B.$\frac{20}{31}$尺C.$\frac{16}{29}$尺D.$\frac{20}{29}$尺

查看答案和解析>>

同步練習(xí)冊答案